
SQL*Plus®
User's Guide and Reference

20c
F15842-01
February 2020

SQL*Plus User's Guide and Reference, 20c

F15842-01

Copyright © 1996, 2020, Oracle and/or its affiliates.

Primary Author: Celin Cherian

Contributors: Luan Nim, Andrei Souleimanian, Senthilprabhu Dhamotharan, Mahantesh Savanur

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or “commercial computer software documentation” pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xv

Documentation Accessibility xv

Related Documents xv

Conventions xvi

 SQL*Plus Quick Start

SQL*Plus Resources xvii

SQL*Plus Overview xvii

SQL*Plus Prerequisites xix

Starting SQL*Plus Command-line xix

About Starting SQL*Plus Instant Client xxi

About Connecting to a Different Database xxi

About Sample Schemas and SQL*Plus xxi

Running your first Query xxii

About Exiting SQL*Plus xxiii

Part I SQL*Plus Getting Started

1 SQL*Plus User Interface

1.1 About the Command-line Screen 1-1

1.2 Changing the Command-line Font and Font Size 1-1

2 Configuring SQL*Plus

2.1 SQL*Plus Environment Variables 2-1

2.1.1 SQLPATH Registry Entry 2-3

2.2 SQL*Plus Configuration 2-3

2.2.1 Site Profile 2-4

2.2.1.1 Default Site Profile Script 2-5

iii

2.2.2 User Profile 2-5

2.2.2.1 Modifying Your LOGIN File 2-5

2.2.3 Storing and Restoring SQL*Plus System Variables 2-6

2.2.3.1 Restoring the System Variables 2-6

2.2.4 About Installing Command-line Help 2-7

2.2.4.1 Running the hlpbld.sql Script to Install Command-line Help 2-7

2.2.4.2 Running the helpdrop.sql Script to Remove Command-line Help 2-8

2.2.5 About Configuring Oracle Net Services 2-8

3 Starting SQL*Plus

3.1 Login Username and Password 3-1

3.1.1 Secure External Password Store 3-2

3.1.2 Expired Password 3-2

3.1.3 About Changing your Password 3-2

3.2 About Connecting to a Database 3-3

3.2.1 Net Service Name 3-3

3.2.2 Full Connection Identifier 3-4

3.2.3 Easy Connection Identifier 3-4

3.2.4 Connectionless Session with /NOLOG 3-5

3.3 About Starting SQL*Plus 3-5

3.3.1 About Starting Command-line SQL*Plus 3-5

3.3.2 About Getting Command-line Help 3-7

3.4 About Exiting SQL*Plus Command-line 3-7

3.5 SQL*Plus Program Syntax 3-7

3.5.1 Options 3-8

3.5.1.1 HELP Option 3-8

3.5.1.2 VERSION Option 3-8

3.5.1.3 COMPATIBILITY Option 3-8

3.5.1.4 LOGON Option 3-8

3.5.1.5 FAST Option 3-9

3.5.1.6 MARKUP Options 3-9

3.5.1.7 MARKUP Usage Notes 3-12

3.5.1.8 No Login Time Option 3-13

3.5.1.9 RESTRICT Option 3-13

3.5.1.10 SILENT Option 3-13

3.5.2 Logon 3-14

3.5.3 Start 3-15

iv

Part II Using SQL*Plus

4 SQL*Plus Basics

4.1 About Entering and Executing Commands 4-1

4.1.1 The SQL Buffer 4-2

4.1.2 About Executing Commands 4-2

4.2 About Listing a Table Definition 4-2

4.3 About Listing PL/SQL Definitions 4-3

4.4 Running SQL Commands 4-3

4.4.1 About Understanding SQL Command Syntax 4-4

4.4.1.1 About Dividing a SQL Command into Separate Lines 4-4

4.4.1.2 About Ending a SQL Command 4-5

4.5 About Running PL/SQL Blocks 4-5

4.5.1 About Creating Stored Procedures 4-6

4.6 Running SQL*Plus Commands 4-7

4.6.1 About Understanding SQL*Plus Command Syntax 4-7

4.6.1.1 About Continuing a Long SQL*Plus Command on Additional Lines
4-8

4.7 System Variables that Affect How Commands Run 4-8

4.8 About Stopping a Command while it is Running 4-9

4.9 About Running Operating System Commands 4-9

4.10 About Pausing the Display 4-9

4.11 About Saving Changes to the Database Automatically 4-10

4.12 About Interpreting Error Messages 4-11

5 Using Scripts in SQL*Plus

5.1 About Editing Scripts 5-1

5.1.1 Writing Scripts with a System Editor 5-1

5.2 About Editing Scripts in SQL*Plus Command-Line 5-2

5.2.1 Listing the Buffer Contents 5-3

5.2.2 Editing the Current Line 5-4

5.2.3 Appending Text to a Line 5-5

5.2.4 Adding a New Line 5-6

5.2.5 Deleting Lines 5-7

5.3 About Placing Comments in Scripts 5-7

5.3.1 Using the REMARK Command 5-7

5.3.2 Using /*...*/ 5-8

5.3.3 Using - - 5-8

5.3.4 Notes on Placing Comments 5-8

v

5.4 Running Scripts 5-10

5.4.1 Running a Script as You Start SQL*Plus 5-11

5.5 Nesting Scripts 5-12

5.6 About Exiting from a Script with a Return Code 5-12

6 Using Substitution Variables

6.1 Defining Substitution Variables 6-1

6.2 About Using Predefined Variables 6-2

6.3 Referencing Substitution Variables 6-2

6.3.1 Where and How to Use Substitution Variables 6-2

6.3.2 Difference Between "&" and "&&" Prefixes 6-4

6.3.3 Storing a Query Column Value in a Substitution Variable 6-5

6.3.4 Restrictions 6-6

6.3.5 How Substitution Variables are Handled in SQL*Plus 6-6

6.3.6 Substitution Variable Commands 6-7

6.3.6.1 Using "&" Prefixes With Title Variables 6-8

6.3.6.2 Variables and Text Spacing in Titles 6-9

6.3.7 Substitution Variable Namespace, Types, Formats and Limits 6-9

6.3.8 Assigning Substitution Variables to Bind Variables 6-11

6.3.9 Assigning Bind Variables to Substitution Variables 6-12

6.3.10 Substitution Variable Examples 6-12

6.3.10.1 Setting a Substitution Variable's Value 6-13

6.3.10.2 Using a Substitution Variable 6-13

6.3.10.3 Finding All Defined Substitution Variables 6-14

6.3.10.4 Inserting Data Containing "&" Without Being Prompted 6-14

6.3.10.5 Putting the Current Date in a Spool File Name 6-14

6.3.10.6 Appending Alphanumeric Characters Immediately After a
Substitution Variable 6-15

6.3.10.7 Putting a Period After a Substitution Variable 6-15

6.3.10.8 Using a Fixed Value Variable in a TTITLE, BTITLE,
REPHEADER or REPFOOTER 6-15

6.3.10.9 Using a Changing Value Variable in a TTITLE, BTITLE,
REPHEADER or REPFOOTER 6-16

6.3.10.10 Using the Value of a Bind Variable in a SQL*Plus Command
Like SPOOL 6-16

6.3.10.11 Passing Parameters to SQL*Plus Substitution Variables 6-17

6.3.10.12 Passing Operating System Variables to SQL*Plus 6-17

6.3.10.13 Passing a Value to a PL/SQL Procedure From the Command
Line 6-17

6.3.10.14 Allowing Script Parameters to be Optional and Have a Default
Value 6-18

6.3.10.15 Using a Variable for the SQL*Plus Return Status 6-19

vi

6.3.10.16 Putting the Username and Database in the Prompt 6-20

6.4 System Variables Influencing Substitution Variables 6-20

6.4.1 System Variables in Titles and EXIT 6-21

6.5 Passing Parameters through the START Command 6-21

6.5.1 Script Parameters 6-23

6.6 About Communicating with the User 6-24

6.6.1 Receiving a Substitution Variable Value 6-24

6.6.2 Customizing Prompts for Substitution Variable 6-25

6.6.3 Sending a Message and Accepting Return as Input 6-26

6.6.4 Clearing the Screen 6-26

6.7 About Using Bind Variables 6-27

6.7.1 Creating Bind Variables 6-27

6.7.2 Referencing Bind Variables 6-27

6.7.3 Displaying Bind Variables 6-27

6.7.4 Executing an Input Bind 6-28

6.8 Using REFCURSOR Bind Variables 6-28

6.9 Fetching Iterative Results from a SELECT inside a PL/SQL Block 6-31

7 Formatting SQL*Plus Reports

7.1 About Formatting Columns 7-1

7.1.1 About Changing Column Headings 7-1

7.1.1.1 Default Headings 7-1

7.1.1.2 Changing Default Headings 7-1

7.1.2 About Formatting NUMBER Columns 7-3

7.1.2.1 Default Display 7-3

7.1.2.2 Changing the Default Display 7-3

7.1.3 About Formatting Datatypes 7-4

7.1.3.1 Default Display 7-5

7.1.3.2 Changing the Default Display 7-5

7.1.4 Copying Column Display Attributes 7-7

7.1.5 Listing and Resetting Column Display Attributes 7-7

7.1.6 About Suppressing and Restoring Column Display Attributes 7-8

7.1.7 Printing a Line of Characters after Wrapped Column Values 7-8

7.2 About Clarifying Your Report with Spacing and Summary Lines 7-9

7.2.1 Suppressing Duplicate Values in Break Columns 7-10

7.2.2 Inserting Space when a Break Column's Value Changes 7-11

7.2.3 Inserting Space after Every Row 7-11

7.2.4 Using Multiple Spacing Techniques 7-12

7.2.5 Listing and Removing Break Definitions 7-12

7.2.6 Computing Summary Lines when a Break Column's Value Changes 7-13

vii

7.2.7 Computing Summary Lines at the End of the Report 7-16

7.2.8 Computing Multiple Summary Values and Lines 7-17

7.2.9 Listing and Removing COMPUTE Definitions 7-18

7.3 About Defining Page and Report Titles and Dimensions 7-19

7.3.1 Setting the Top and Bottom Titles and Headers and Footers 7-19

7.3.1.1 Positioning Title Elements 7-20

7.3.1.2 Indenting a Title Element 7-21

7.3.1.3 Entering Long Titles 7-22

7.3.2 Displaying System-Maintained Values in Titles 7-22

7.3.3 Listing, Suppressing, and Restoring Page Title Definitions 7-23

7.3.4 Displaying Column Values in Titles 7-24

7.3.5 About Displaying the Current Date in Titles 7-25

7.3.6 Setting Page Dimensions 7-25

7.4 About Storing and Printing Query Results 7-27

7.4.1 Creating a Flat File 7-27

7.4.2 Sending Results to a File 7-28

7.4.3 Sending Results to a Printer 7-28

8 Generating Reports from SQL*Plus

8.1 About Creating Reports using Command-line SQL*Plus 8-1

8.1.1 Creating HTML Reports 8-2

8.1.1.1 HTML Entities 8-5

8.1.2 Creating CSV Reports 8-5

8.1.3 About Suppressing the Display of SQL*Plus Commands in Reports 8-6

9 Tuning SQL*Plus

9.1 About Tracing Statements 9-1

9.1.1 Controlling the Autotrace Report 9-1

9.1.2 Execution Plan 9-2

9.1.3 Statistics 9-3

9.2 About Collecting Timing Statistics 9-6

9.3 Tracing Parallel and Distributed Queries 9-6

9.4 Execution Plan Output in Earlier Databases 9-8

9.5 About SQL*Plus Script Tuning 9-9

9.5.1 COLUMN NOPRINT 9-9

9.5.2 SET APPINFO OFF 9-9

9.5.3 SET ARRAYSIZE 9-9

9.5.4 SET DEFINE OFF 9-9

9.5.5 SET FLUSH OFF 9-9

viii

9.5.6 SET LINESIZE 9-10

9.5.7 SET LONGCHUNKSIZE 9-10

9.5.8 SET PAGESIZE 9-10

9.5.9 SET SERVEROUTPUT 9-10

9.5.10 SET SQLPROMPT 9-10

9.5.11 SET TAB 9-10

9.5.12 SET TERMOUT 9-11

9.5.13 SET TRIMOUT ON SET TRIMSPOOL ON 9-11

9.5.14 UNDEFINE 9-11

10

SQL*Plus Security

10.1 Disabling SQL*Plus, SQL, and PL/SQL Commands 10-1

10.2 About Creating and Controlling Roles 10-4

10.2.1 About Disabling SET ROLE 10-5

10.2.2 About Disabling User Roles 10-5

10.3 About Disabling Commands with SQLPLUS -RESTRICT 10-6

10.4 About Program Argument Security 10-6

11

Database Administration with SQL*Plus

11.1 Overview 11-1

11.2 Introduction to Database Startup and Shutdown 11-1

11.2.1 Database Startup 11-1

11.2.2 PDB Startup 11-2

11.2.3 Database Shutdown 11-3

11.2.4 PDB Shutdown 11-3

11.3 Redo Log Files 11-4

11.3.1 ARCHIVELOG Mode 11-4

11.4 Database Recovery 11-4

12

SQL*Plus Globalization Support

12.1 About Configuring Globalization Support in Command-line SQL*Plus 12-1

12.1.1 SQL*Plus Client 12-1

12.1.2 Oracle Database 12-1

12.2 NLS_LANG Environment Variable 12-1

12.2.1 Viewing NLS_LANG Settings 12-2

12.3 Setting NLS_LANG 12-2

ix

Part III SQL*Plus Reference

13

SQL*Plus Command Reference

13.1 SQL*Plus Command Summary 13-1

13.2 @ (at sign) 13-4

13.3 @@ (double at sign) 13-5

13.4 / (slash) 13-7

13.5 ACCEPT 13-7

13.6 APPEND 13-9

13.7 ARCHIVE LOG 13-10

13.8 ATTRIBUTE 13-11

13.9 BREAK 13-12

13.10 BTITLE 13-16

13.11 CHANGE 13-17

13.12 CLEAR 13-19

13.13 COLUMN 13-20

13.14 COMPUTE 13-28

13.15 CONNECT 13-32

13.16 COPY 13-35

13.17 DEFINE 13-35

13.17.1 Predefined Variables 13-36

13.18 DEL 13-39

13.19 DESCRIBE 13-41

13.20 DISCONNECT 13-46

13.21 EDIT 13-47

13.22 EXECUTE 13-48

13.23 EXIT 13-49

13.24 GET 13-50

13.25 HELP 13-51

13.26 HISTORY 13-52

13.27 HOST 13-54

13.28 INPUT 13-55

13.29 LIST 13-56

13.30 PASSWORD 13-58

13.31 PAUSE 13-58

13.32 PRINT 13-59

13.33 PROMPT 13-60

13.34 RECOVER 13-60

13.35 REMARK 13-67

13.36 REPFOOTER 13-68

x

13.37 REPHEADER 13-69

13.38 RUN 13-71

13.39 SAVE 13-72

13.40 SET 13-73

13.41 SET System Variable Summary 13-74

13.41.1 SET APPINFO 13-78

13.41.2 SET ARRAYSIZE 13-79

13.41.3 SET AUTOCOMMIT 13-79

13.41.4 SET AUTOPRINT 13-79

13.41.5 SET AUTORECOVERY 13-80

13.41.6 SET AUTOTRACE 13-80

13.41.7 SET BLOCKTERMINATOR 13-81

13.41.8 SET CMDSEP 13-81

13.41.9 SET COLINVISIBLE 13-82

13.41.10 SET COLSEP 13-83

13.41.11 SET CONCAT 13-84

13.41.12 SET COPYCOMMIT 13-84

13.41.13 SET COPYTYPECHECK 13-84

13.41.14 SET DEFINE 13-84

13.41.15 SET DESCRIBE 13-85

13.41.16 SET ECHO 13-86

13.41.17 SET EDITFILE 13-86

13.41.18 SET EMBEDDED 13-86

13.41.19 SET ERRORLOGGING 13-86

13.41.20 SET ESCAPE 13-91

13.41.21 SET ESCCHAR 13-92

13.41.22 SET EXITCOMMIT 13-92

13.41.23 SET FEEDBACK 13-93

13.41.24 SET FLAGGER 13-94

13.41.25 SET FLUSH 13-95

13.41.26 SET HEADING 13-95

13.41.27 SET HEADSEP 13-96

13.41.28 SET HISTORY 13-96

13.41.29 SET INSTANCE 13-96

13.41.30 SET JSONPRINT 13-97

13.41.31 SET LINESIZE 13-98

13.41.32 SET LOBOFFSET 13-99

13.41.33 SET LOBPREFETCH 13-99

13.41.34 SET LOGSOURCE 13-100

13.41.35 SET LONG 13-100

13.41.36 SET LONGCHUNKSIZE 13-101

xi

13.41.37 SET MARKUP 13-101

13.41.38 SET NEWPAGE 13-106

13.41.39 SET NULL 13-106

13.41.40 SET NUMFORMAT 13-106

13.41.41 SET NUMWIDTH 13-107

13.41.42 SET PAGESIZE 13-107

13.41.43 SET PAUSE 13-107

13.41.44 SET RECSEP 13-107

13.41.45 SET RECSEPCHAR 13-108

13.41.46 SET ROWLIMIT 13-108

13.41.47 SET ROWPREFETCH 13-109

13.41.48 SET SECUREDCOL 13-110

13.41.49 SET SERVEROUTPUT 13-111

13.41.50 SET SHIFTINOUT 13-113

13.41.51 SET SHOWMODE 13-113

13.41.52 SET SQLBLANKLINES 13-113

13.41.53 SET SQLCASE 13-114

13.41.54 SET SQLCONTINUE 13-114

13.41.55 SET SQLNUMBER 13-115

13.41.56 SET SQLPLUSCOMPATIBILITY 13-115

13.41.56.1 SQL*Plus Compatibility Matrix 13-115

13.41.57 SET SQLPREFIX 13-116

13.41.58 SET SQLPROMPT 13-116

13.41.59 SET SQLTERMINATOR 13-117

13.41.60 SET STATEMENTCACHE 13-118

13.41.61 SET SUFFIX 13-118

13.41.62 SET TAB 13-119

13.41.63 SET TERMOUT 13-119

13.41.64 SET TIME 13-119

13.41.65 SET TIMING 13-119

13.41.66 SET TRIMOUT 13-120

13.41.67 SET TRIMSPOOL 13-120

13.41.68 SET UNDERLINE 13-120

13.41.69 SET VERIFY 13-121

13.41.70 SET WRAP 13-121

13.41.71 SET XMLOPTIMIZATIONCHECK 13-121

13.41.72 SET XQUERY BASEURI 13-121

13.41.73 SET XQUERY ORDERING 13-122

13.41.74 SET XQUERY NODE 13-122

13.41.75 SET XQUERY CONTEXT 13-123

13.42 SHOW 13-124

xii

13.43 SHUTDOWN 13-130

13.44 SPOOL 13-132

13.45 START 13-133

13.46 STARTUP 13-135

13.47 STORE 13-140

13.48 TIMING 13-140

13.49 TTITLE 13-141

13.50 UNDEFINE 13-144

13.51 VARIABLE 13-144

13.52 WHENEVER OSERROR 13-151

13.53 WHENEVER SQLERROR 13-152

13.54 XQUERY 13-153

14

SQL*Plus Error Messages

14.1 SQL*Plus Error Messages 14-1

14.2 COPY Command Messages 14-36

Part IV SQL*Plus Appendixes

A SQL*Plus Limits

B SQL*Plus COPY Command

B.1 COPY Command Syntax B-1

B.1.1 Terms B-1

B.1.2 Usage B-3

B.1.3 Examples B-3

B.2 Copying Data from One Database to Another B-3

B.2.1 Understanding COPY Command Syntax B-4

B.2.2 About Controlling Treatment of the Destination Table B-5

B.2.3 About Interpreting the Messages that COPY Displays B-6

B.2.4 Specifying Another User's Table B-7

B.3 About Copying Data between Tables on One Database B-7

C Obsolete SQL*Plus Commands

C.1 SQL*Plus Obsolete Command Alternatives C-1

C.2 BTITLE (old form) C-2

C.3 COLUMN DEFAULT C-2

xiii

C.4 DOCUMENT C-2

C.5 NEWPAGE C-3

C.6 SET BUFFER C-3

C.7 SET COMPATIBILITY C-3

C.8 SET CLOSECURSOR C-4

C.9 SET DOCUMENT C-4

C.10 SET MAXDATA C-4

C.11 SET SCAN C-5

C.12 SET SPACE C-5

C.13 SET TRUNCATE C-5

C.14 TTITLE (old form) C-5

D SQL*Plus Instant Client

D.1 About Choosing the SQL*Plus Instant Client to Install D-1

D.1.1 Basic Instant Client D-1

D.1.2 Lightweight Instant Client D-1

D.1.2.1 Lightweight SQL*Plus Instant Client Error with Unsupported
Character Set D-2

D.2 About Installing SQL*Plus Instant Client by Downloading from OTN D-2

D.2.1 Installing SQL*Plus Instant Client from Linux RPM Packages D-2

D.2.2 Installing SQL*Plus Instant Client from the UNIX or Windows Zip Files D-2

D.2.3 List of Files Required for SQL*Plus Instant Client D-3

D.3 Installing SQL*Plus Instant Client from the 20c Client Release Media D-3

D.3.1 Installing SQL*Plus Instant Client on UNIX or Linux D-4

D.3.2 Installing SQL*Plus Instant Client on Windows D-4

D.4 About Configuring SQL*Plus Instant Client D-4

D.4.1 Configuring SQL*Plus Instant Client on Linux (from RPMs) D-5

D.4.2 Configuring SQL*Plus Instant Client on Linux (from Client Media or Zip
File) and UNIX D-5

D.4.3 Configuring SQL*Plus Instant Client on Windows D-6

D.5 About Connecting to a Database with SQL*Plus Instant Client D-6

D.6 AS SYSDBA or AS SYSOPER Connections with SQL*Plus Instant Client D-7

D.7 About Uninstalling Instant Client D-7

D.7.1 Uninstalling SQL*Plus Instant Client D-7

D.7.2 Uninstalling the Complete Instant Client D-8

Index

xiv

Preface

The SQL*Plus (pronounced "sequel plus") User's Guide and Reference introduces
SQL*Plus and its uses, and describes each SQL*Plus command.

This preface contains these topics:

• Audience

• Documentation Accessibility

• Related Documents

• Conventions

Audience
The SQL*Plus User's Guide and Reference is intended for business and technical
users and system administrators who perform the following tasks:

• Develop and run batch scripts

• Format, calculate on, store, print and create web output from query results

• Examine table and object definitions

• Perform database administration

This document assumes a basic understanding of the SQL language. If you do not
have familiarity with SQL, see the Oracle Database SQL Language Reference. If you
plan to use PL/SQL with SQL*Plus, see the Oracle Database PL/SQL Language
Reference.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
For more information, see these Oracle resources:

xv

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

• SQL*Plus Quick Reference

• Oracle Database PL/SQL Language Reference

• Oracle Database SQL Language Reference

• Oracle Call Interface Programmer's Guide

• Oracle Database Concepts

• Oracle Database Administrator's Guide

• Oracle Database Backup and Recovery User's Guide

• Oracle Database Advanced Application Developer's Guide

• Oracle XML DB Developer's Guide

• Oracle Database Globalization Support Guide

• Oracle Database Heterogeneous Connectivity Administrator's Guide

• Oracle Database Error Messages

• Oracle Database Upgrade Guide

• Oracle Database Reference

• Oracle Database Performance Tuning Guide

• Oracle Database Net Services Administrator's Guide

• Pro*COBOL Programmer's Guide

• Pro*C/C++ Programmer's Guide

• Oracle Database installation and user's manuals for your operating system

Many of the examples in this book use the sample schemas, which are installed by
default when you select the Basic Installation option with an Oracle Database
installation. See Oracle Database Sample Schemas for information on how these
schemas were created and how you can use them yourself.

SQL*Plus error message documentation is available in SQL*Plus Error Messages.
Oracle Database error message documentation is only available in HTML. If you only
have access to the Oracle Database Documentation media, you can browse the
Oracle Database error messages by range. Once you find the specific range, use your
browser's "find in page" feature to locate the specific message. When connected to the
Internet, you can search for a specific error message using the error message search
feature of the Oracle Database online documentation.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables
for which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs,
code in examples, text that appears on the screen, or text that you
enter.

Preface

xvi

SQL*Plus Quick Start

These instructions are to enable you to login and connect to a database after you have
installed SQL*Plus. You can connect to the default database you created during
installation, or to another existing Oracle database.

• SQL*Plus Resources

• SQL*Plus Overview

• SQL*Plus Prerequisites

• Starting SQL*Plus Command-line

• About Starting SQL*Plus Instant Client

• About Connecting to a Different Database

• About Sample Schemas and SQL*Plus

• Running your first Query

• About Exiting SQL*Plus

SQL*Plus Resources
• SQL*Plus Discussion Forum at https://forums.oracle.com/forums/

forum.jspa?forumID=144.

• Oracle Documentation Library at http://www.oracle.com/technetwork/.

SQL*Plus Overview
SQL*Plus is an interactive and batch query tool that is installed with every Oracle
Database installation. It has a command-line user interface.

There is also the SQL*Plus Instant Client which is a standalone command-line
interface available on platforms that support the OCI Instant Client. SQL*Plus Instant
Client connects to any available Oracle database, but does not require its own Oracle
database installation. See the Oracle Call Interface Programmer's Guide for more
information on the OCI Instant Client.

SQL*Plus has its own commands and environment, and it provides access to the
Oracle Database. It enables you to enter and execute SQL, PL/SQL, SQL*Plus and
operating system commands to perform the following:

• Format, perform calculations on, store, and print from query results

• Examine table and object definitions

• Develop and run batch scripts

• Perform database administration

xvii

https://forums.oracle.com/forums/forum.jspa?forumID=144
https://forums.oracle.com/forums/forum.jspa?forumID=144
http://www.oracle.com/technetwork/

You can use SQL*Plus to generate reports interactively, to generate reports as batch
processes, and to output the results to text file, to screen, or to HTML file for browsing
on the Internet. You can generate reports dynamically using the HTML output facility of
SQL*Plus.

Who Can Use SQL*Plus
The SQL*Plus, SQL, and PL/SQL command languages are powerful enough to serve
the needs of users with some database experience, yet straightforward enough for
new users who are just learning to work with the Oracle Database.

The SQL*Plus language is easy to use. For example, to rename a column labeled
LAST_NAME with the heading "Family Name", enter the command:

COLUMN LAST_NAME HEADING 'Family Name'

Similarly, to list column definitions for the EMPLOYEES table, enter the command:

DESCRIBE EMPLOYEES

How Can I Learn SQL*Plus
There are several sources available to assist you to learn SQL*Plus:

• Part II of this Guide, Using SQL*Plus

• Help for SQL*Plus, Command-line help

• Oracle Database 12c: SQL Fundamentals

An instructor-led course run by Oracle. This is a comprehensive hands-on course
taking the student through all aspects of using SQL*Plus to access Oracle
Database.

• More Oracle Database 12c Training

To find more useful Oracle courses, go to http://www.oracle.com/education.

How to Use the SQL*Plus Guide
This guide provides information about SQL*Plus that applies to all operating systems.
It also includes some Windows and UNIX specific information. Some aspects of
SQL*Plus may differ on each operating system. Operating system specific details are
covered in the Oracle Database Installation Guide provided for your system. Use these
operating system specific guides with this SQL*Plus User's Guide and Reference.

Throughout this guide, examples showing how to enter commands use a common
command syntax and a common set of sample tables. The tables are described in
"About Sample Schemas and SQL*Plus".

SQL*Plus Command-line Architecture
SQL*Plus command-line uses a two-tier model comprising:

• Client (command-line user interface).

• Database (Oracle Database).

The two tiers may be on the same computer.

SQL*Plus Quick Start

xviii

http://www.oracle.com/education

SQL*Plus Client
The command-line user interface is the character-based terminal implementation.

Oracle Database
Oracle Database Net components provide communication between the SQL*Plus
Client and Oracle Database.

SQL*Plus Prerequisites
SQL*Plus is a component of Oracle Database. SQL*Plus is installed by default when
you install the Oracle Database.

Some aspects of Oracle Database and SQL*Plus differ from one computer and
operating system to another. These topics are discussed in the Oracle Database
Installation Guide for each operating system that SQL*Plus supports.

What is necessary before you can run SQL*Plus?

• Install Oracle Database or Oracle Client. See the Oracle Database Installation
Guide for your operating system available at http://www.oracle.com/
technetwork/.

• Obtain an Oracle Database login username and password during installation or
from your Database Administrator. See Login Username and Password.

• Ensure a sample database is installed and that you have a login username and
password for it during Oracle Database installation. See About Sample Schemas
and SQL*Plus.

• Create a default database during installation or obtain the connection identifier for
the Oracle Database you want to connect to from your Database Administrator.
See About Connecting to a Database.

• Ensure the database you want to connect to is started. See the STARTUP
command.

SQL*Plus Date Format
The default date format in SQL*Plus is determined by the database
NLS_DATE_FORMAT parameter and may use a date format displaying two digit
years. You can use the SQL TO_CHAR function, or the SQL*Plus COLUMN FORMAT
command in your SELECT statements to control the way dates are displayed in your
report.

Starting SQL*Plus Command-line
The SQL*Plus executable is usually installed in $ORACLE_HOME/bin, which is
usually included in your operating system PATH environment variable. You may need
to change directory to the $ORACLE_HOME/bin directory to start SQL*Plus.

In the following examples, you are prompted to enter the database account password.

SQL*Plus Quick Start

xix

http://www.oracle.com/technetwork/
http://www.oracle.com/technetwork/

An example using an Easy Connection identifier to connect to the HR schema in the
MYDB database running on mymachine is:

sqlplus hr@\"//mymachine.mydomain:port/MYDB\"

An example using a Net Service Name is:

sqlplus hr@MYDB

Net Service Names can be stored in several places, including Oracle Names. See the
Net Services Reference Guide for more information.

If you want to use Net Service Names configured in a local Oracle Net tnsnames.ora
file, then set the environment variable TNS_ADMIN to the directory containing the
tnsnames.ora file. For example, on UNIX, if your tnsnames.ora file is in /home/user1
and it defines the Net Service Name MYDB2:

TNS_ADMIN=/home/user1
export TNS_ADMIN
sqlplus hr@MYDB2

This example assumes the ORACLE_HOME environment variable is set, and
the $ORACLE_HOME/network/admin/tnsnames.ora or ORACLE_HOME\network
\admin\tnsnames.ora file defines the Net Service Name MYDB3:

sqlplus hr@MYDB3

The TWO_TASK (on UNIX) or LOCAL (on Windows) environment variable can be set
to a connection identifier. This removes the need to explicitly enter the connection
identifier whenever a connection is made in SQL*Plus or SQL*Plus Instant Client. This
UNIX example connects to the database known as MYDB4:

TNS_ADMIN=/home/user1
export TNS_ADMIN
TWO_TASK=MYDB4
export TWO_TASK
sqlplus hr

To start SQL*Plus and connect to the default database

1. Open a UNIX or a Windows terminal and enter the SQL*Plus command:

sqlplus

2. When prompted, enter your Oracle Database username and password. If you do
not know your Oracle Database username and password, ask your Database
Administrator.

3. Alternatively, enter the SQL*Plus command in the form:

sqlplus username

You are prompted to enter your password.

4. SQL*Plus starts and connects to the default database.

Now you can start entering and executing SQL, PL/SQL and SQL*Plus statements
and commands at the SQL> prompt.

Example 1 To start SQL*Plus and connect to a database other than the default

Open a UNIX or a Windows terminal and enter the SQL*Plus command:

SQL*Plus Quick Start

xx

sqlplus username@connect_identifier

You are prompted to enter your password.

About Starting SQL*Plus Instant Client
SQL*Plus Instant Client is the SQL*Plus command-line without the need to install
Oracle Database. For information about using it, see Starting SQL*Plus Command-
line.

Because SQL*Plus Instant Client does not include a database, it is always 'remote'
from any database server. To connect to a database you must specify the database
using an Oracle Net connection identifier.

If TNS_ADMIN is not set, then an operating system dependent set of directories is
examined to find tnsnames.ora. This search path includes looking in the directory
specified by the ORACLE_HOME environment variable for network/admin/
tnsnames.ora. This is the only reason to set the ORACLE_HOME environment
variable for SQL*Plus Instant Client. If ORACLE_HOME is set when running Instant
Client applications, it must be set to a directory that exists.

About Connecting to a Different Database
From an existing command-line session, enter a CONNECT command in the form:

SQL> connect username@connect_identifier

You are prompted to enter your password.

About Sample Schemas and SQL*Plus
Sample schemas are included with the Oracle Database. Examples in this guide use
the EMP_DETAILS_VIEW view of the Human Resources (HR) sample schema. This
schema contains personnel records for a fictitious company. To view column details
for the view, EMP_DETAILS_VIEW, enter

DESCRIBE EMP_DETAILS_VIEW

For more information about the sample schemas, see the Oracle Database Sample
Schemas guide.

Unlocking the Sample Tables
The Human Resources (HR) Sample Schema is installed as part of the default Oracle
Database installation. The HR account is locked by default.

You must unlock the HR account before you can use the HR sample schema. To
unlock the HR account, log in as the SYSTEM user and enter the following command,
where your_password is the password you want to define for the user HR:

ALTER USER HR IDENTIFIED BY your_password ACCOUNT UNLOCK;

For further information about unlocking the HR account, see the Oracle Database
Sample Schemas guide. The HR user is primarily to enable you to access the HR
sample schema and is necessary to enable you to run the examples in this guide.

SQL*Plus Quick Start

xxi

Each table in the database is "owned" by a particular user. You may want to have your
own copies of the sample tables to use as you try the examples in this guide. To get
your own copies of the HR tables, see your DBA or see the Oracle Database Sample
Schemas guide, or you can create the HR tables with the script HR_MAIN.SQL which
is located in the following directory on UNIX:

$ORACLE_HOME/demo/schema/human_resources/hr_main.sql

And on the following directory on Windows:

ORACLE_HOME\DEMO\SCHEMA\HUMAN_RESOURCES\HR_MAIN.SQL

To create the HR tables from command-line SQL*Plus, do the following:

1. Ask your DBA for your Oracle Database account username and password.

2. Login to SQL*Plus.

3. On UNIX, enter the following command at the SQL*Plus prompt:

SQL> @?/DEMO/SCHEMA/HUMAN_RESOURCES/HR_MAIN.SQL

On Windows, enter the following command at the SQL*Plus prompt:

SQL> @?\DEMO\SCHEMA\HUMAN_RESOURCES\HR_MAIN.SQL

To remove the sample tables, perform the same steps but substitute HR_DROP.SQL
for HR_MAIN.SQL.

Running your first Query
To describe a database object, for example, column details for EMP_DETAILS_VIEW,
enter a DESCRIBE command like:

DESCRIBE EMP_DETAILS_VIEW

which produces the following output:

To rename the column headings, and to select data from the HR sample schema view,
EMP_DETAILS_VIEW, enter

COLUMN FIRST_NAME HEADING "First Name"
COLUMN LAST_NAME HEADING "Family Name"

SQL*Plus Quick Start

xxii

SELECT FIRST_NAME, LAST_NAME
FROM EMP_DETAILS_VIEW
WHERE LAST_NAME LIKE 'K%';

which produces the following output:

About Exiting SQL*Plus
To exit SQL*Plus command-line, enter EXIT.

SQL*Plus Quick Start

xxiii

Part I
SQL*Plus Getting Started

Part 1 provides the information you need to get started with SQL*Plus. It describes the
command-line user interface, provides configuration information and information you
need to log in and run SQL*Plus.

Part 1 contains the following chapters:

• SQL*Plus User Interface

• Configuring SQL*Plus

• Starting SQL*Plus

1
SQL*Plus User Interface

This chapter describes the SQL*Plus command-line user interface. It contains the
following topics:

• About The Command-line Screen

• Changing the Command-line Font and Font Size

1.1 About the Command-line Screen
The SQL*Plus command-line interface is standard on all operating systems.

When SQL*Plus starts, it displays the date and time, the SQL*Plus version and
copyright information before the SQL*Plus prompt appears. The default prompt for
SQL*Plus command-line is:

SQL>

1.2 Changing the Command-line Font and Font Size
In Windows, from a Command Prompt, open the Command Prompt Properties dialog
to set the font and font size used in the SQL*Plus command-line interface.

To Change the Command-line Interface Font and Font Size

1. Right click in the command-line interface title bar.

2. Click Properties. The Window Preview box displays the current window's relative
size on your monitor based on your font and font size selections. The Selected
Font: box displays a sample of the current font.

3. Click the Font tab.

4. Select the font size to use from the Size box. Raster font sizes are shown as width
by height in pixels. TrueType font sizes are shown as height in pixels.

5. Select the font to use from the Font box.

6. Select the Bold Fonts check box to use a bold version of the font.

For more information about changing Command Prompt properties, see Windows Help
or click Help in the Command Prompt Properties dialog.

1-1

2
Configuring SQL*Plus

This chapter explains how to configure your SQL*Plus command-line environment. It
has the following topics:

• SQL*Plus Environment Variables

• SQL*Plus Configuration

2.1 SQL*Plus Environment Variables
These environment variables specify the location or path of files used by SQL*Plus.
For other environment variables that influence the behavior of SQL*Plus, see the
Oracle Database Administrator's Reference.

Table 2-1 Parameters or Environment Variables influencing SQL*Plus

Parameter or Variable Description

LD_LIBRARY_PATH Environment variable to specify the path used to search for
libraries on UNIX and Linux. The environment variable may
have a different name on some operating systems, such as
DYLD_LIBRARY_PATH on Apple Mac OS, LIBPATH on IBM/
AIX-5L, and SHLIB_PATH on HP-UX. Not applicable to
Windows operating systems.

Example

$ORACLE_HOME/lib

LOCAL Windows environment variable to specify a connection string.
Performs the same function as TWO_TASK on UNIX.

NLS_LANG Environment variable to specify globalization behavior.

Example

american_america.utf8

ORACLE_HOME Environment variable to specify where SQL*Plus is installed. It
is also used by SQL*Plus to specify where message files are
located.

Examples:

d:\oracle\10g
/u01/app/oracle/product/v10g

2-1

Table 2-1 (Cont.) Parameters or Environment Variables influencing SQL*Plus

Parameter or Variable Description

ORA_EDITION Environment variable to specify the database edition to use. If
you specify the edition with the CONNECT or SQLPLUS
command option, edition=value, it is used instead of
ORA_EDITION. If no edition is specified in either the
CONNECT or SQLPLUS command option, or in
ORA_EDITION, SQL*Plus connects to the default edition.

When ORA_EDITION is set, a subsequent STARTUP
command in the session results in an ORA-38802 error. To
correct this, you must unset ORA_EDITION, then reconnect
and shutdown the database, then start the database again.

ORA_NLS10 Environment variable to specify the locations of the NLS data
and the user boot file in SQL*Plus 10.2. The default location
is $ORACLE_HOME/nls/data. In a system with both Oracle9i
and 10g, or a system under version upgrade, you should set
ORA_NLS10 for Oracle 10g and set ORA_NLS33 for 9i. The
default NLS location in 9i was $ORACLE_HOME/common/nls/
admin/data.

ORACLE_PATH Environment variable to specify the location of SQL scripts. If
SQL*Plus cannot find the file in ORACLE_PATH, or if
ORACLE_PATH is not set, it searches for the file in the current
working directory.

Not applicable to Windows

ORACLE_SID Environment variable to specify the database instance, optional

PATH Environment variable to specify the path to search for
executables, and DLLs in Windows. Typically includes
ORACLE_HOME/bin

SQLPATH Environment variable or Windows registry entry to specify the
location of SQL scripts. SQL*Plus searches for SQL scripts,
including login.sql, in the directories specified by SQLPATH.
SQLPATH is a colon-separated list of directories. There is no
default value set in UNIX installations.

In Windows, SQLPATH is defined in a registry entry during
installation. For more information about the SQLPATH registry
entry, see SQLPATH Registry Entry.

TNS_ADMIN Environment variable to specify the location of the
tnsnames.ora file. If not specified, $ORACLE_HOME/network/
admin is used

Example

h:\network
/var/opt/oracle

Chapter 2
SQL*Plus Environment Variables

2-2

Table 2-1 (Cont.) Parameters or Environment Variables influencing SQL*Plus

Parameter or Variable Description

TWO_TASK UNIX environment variable to specify a connection string.
Connections that do not specify a database will connect to the
database specified in TWO_TASK.

Example

TWO_TASK=MYDB
export TWO_TASK
sqlplus hr

is the same as:

sqlplus hr@MYDB

2.1.1 SQLPATH Registry Entry
The SQLPATH registry entry specifies the location of SQL scripts. SQL*Plus searches
for SQL scripts in the current directory and then in the directories specified by the
SQLPATH registry entry, and in the subdirectories of SQLPATH directories.

The HKEY_LOCAL_MACHINE\SOFTWARE\ORACLE\HOME0 registry subkey (or the
HOMEn directory for the associated ORACLE_HOME) contains the SQLPATH registry
entry. SQLPATH is created with a default value of ORACLE_HOME\DBS. You can
specify any directories on any drive as valid values for SQLPATH.

When setting the SQLPATH registry entry, you can concatenate directories with a
semicolon (;). For example:

c:\oracle\ora12\database;c:\oracle\ora12\dbs

See the Registry Editor's help system for instructions on how to edit the SQLPATH
registry entry.

2.2 SQL*Plus Configuration
You can set up your SQL*Plus environment to use the same settings with each
session.

There are two operating system files to do this:

• The Site Profile file, glogin.sql, for site wide settings.

• Additionally, the User Profile, login.sql, sets user specific settings.

The exact names of these files is system dependent.

Chapter 2
SQL*Plus Configuration

2-3

Note:

The Site Profile and User Profile files are run after a successful Oracle
Database connection from a SQLPLUS or CONNECT command, or where /NOLOG
is specified.The Site Profile and User Profile files are not run when you
switch to another PDB using ALTER SESSION SET CONTAINER.

Some privileged connections may generate errors if SET SERVEROUTPUT or SET
APPINFO commands are put in the Site Profile or User Profile.

The following tables show the profile scripts, and some commands and settings that
affect the Command-line user interface.

Table 2-2 Profile Scripts affecting SQL*Plus User Interface Settings

This script ... is run in the Command-line...

Site Profile (glogin.sql)

Can contain any content that
can be included in a SQL*Plus
script, such as system variable
settings or other global settings
the DBA wants to implement.

After successful Oracle Database connection from a
SQLPLUS or CONNECT command.

Where /NOLOG is specified.

User Profile (login.sql)

Can contain any content that
can be included in a SQL*Plus
script, but the settings are only
applicable to the user's
sessions.

Immediately after the Site Profile.

Table 2-3 Commands in Profile scripts affecting SQL*Plus User Interface
Settings

In a profile script, this
command ...

affects the Command-line by ...

SET
SQLPLUSCOMPAT[IBILITY]
{x.y[.z]}

Also see the SQL*Plus
Compatibility Matrix.

Setting the SQL*Plus compatibility mode to obtain the
behavior the DBA wants for this site.

SQLPLUS command
COMPATIBILITY Option

As for SET SQLPLUSCOMPATIBILITY but set with the
SQLPLUS command COMPATIBILITY option.

SQLPLUS command
RESTRICT Option

Starting SQL*Plus with the RESTRICT option set to 3
prevents the User Profile script from being read.

2.2.1 Site Profile
A Site Profile script is created during installation. It is used by the database
administrator to configure site-wide behavior for SQL*Plus Command-line connections.
The Site Profile script installed during installation is an empty script.

Chapter 2
SQL*Plus Configuration

2-4

The Site Profile script is generally named glogin.sql. SQL*Plus executes this script
whenever a user starts a SQL*Plus session and successfully establishes the Oracle
Database connection.

The Site Profile enables the DBA to set up site wide SQL*Plus environment defaults
for all users of a particular SQL*Plus installation

Users cannot directly access the Site Profile.

2.2.1.1 Default Site Profile Script
The Site Profile script is $ORACLE_HOME/sqlplus/admin/glogin.sql in UNIX, and
ORACLE_HOME\sqlplus\admin\glogin.sql in Windows. If a Site Profile already exists
at this location, it is overwritten when you install SQL*Plus. If SQL*Plus is removed,
the Site Profile script is deleted.

2.2.2 User Profile
For SQL*Plus command-line connections, SQL*Plus also supports a User Profile
script. The User Profile is executed after the Site Profile and is intended to allow users
to specifically customize their session. The User Profile script is generally named
login.sql. SQL*Plus searches for the directories you specify with the ORACLE_PATH
environment variable. SQL*Plus searches this colon-separated list of directories and
their subdirectories in the order they are listed.

Note:

SQL*Plus will no longer search for login.sql in the current directory.

You can add any SQL commands, PL/SQL blocks, or SQL*Plus commands to your
user profile. When you start SQL*Plus, it automatically searches for your user profile
and runs the commands it contains.

2.2.2.1 Modifying Your LOGIN File
You can modify your LOGIN file just as you would any other script. The following
sample User Profile script shows some modifications that you could include:

-- login.sql
-- SQL*Plus user login startup file.
--
-- This script is automatically run after glogin.sql
--
-- To change the SQL*Plus prompt to display the current user,
-- connection identifier and current time.
-- First set the database date format to show the time.
ALTER SESSION SET nls_date_format = 'HH:MI:SS';

-- SET the SQLPROMPT to include the _USER, _CONNECT_IDENTIFIER
-- and _DATE variables.
SET SQLPROMPT "_USER'@'_CONNECT_IDENTIFIER _DATE> "

-- To set the number of lines to display in a report page to 24.
SET PAGESIZE 24

Chapter 2
SQL*Plus Configuration

2-5

-- To set the number of characters to display on each report line to 78.
SET LINESIZE 78

-- To set the number format used in a report to $99,999.
SET NUMFORMAT $99,999

See Also:

• SET command for more information on these and other SET command
variables you may wish to set in your SQL*Plus LOGIN file.

• About Using Predefined Variables for more information about predefined
variables.

2.2.3 Storing and Restoring SQL*Plus System Variables
From the Command-line you can store the current SQL*Plus system variables in a
script with the STORE command. If you alter any variables, this script can be run to
restore the original values. This is useful if you want to reset system variables after
running a report that alters them. You could also include the script in your User Profile
script so that these system variables are set each time you start SQL*Plus.

To store the current setting of all system variables, enter

STORE SET file_name

Enter a file name and file extension, or enter only the file name to use the default
extension .SQL. You can use the SET SUF[FIX] {SQL | text} command to change the
default file extension.

2.2.3.1 Restoring the System Variables
To restore the stored system variables, enter

START file_name

If the file has the default extension (as specified by the SET SUF[FIX] {SQL | text}
command), you do not need to add the period and extension to the file name.

You can also use the @ (at sign) or the @@ (double at sign) commands to run the
script.

Created file plusenv

Now the value of any system variable can be changed:

SHOW PAGESIZE

PAGESIZE 24

Chapter 2
SQL*Plus Configuration

2-6

SET PAGESIZE 60
SHOW PAGESIZE

PAGESIZE 60

The original values of system variables can then be restored from the script:

START plusenv
SHOW PAGESIZE

PAGESIZE 24

Example 2-1 Storing and Restoring SQL*Plus System Variables

To store the current values of the SQL*Plus system variables in a new script
"plusenv.sql":

STORE SET plusenv

2.2.4 About Installing Command-line Help
Command-line help is usually installed during Oracle Database installation. If not, the
database administrator can create the SQL*Plus command-line help tables and
populate them with SQL*Plus help data by running a supplied SQL script from
SQL*Plus.

The database administrator can also remove the SQL*Plus command-line help tables
by running a SQL script from SQL*Plus.

Before you can install or remove SQL*Plus help, ensure that:

• SQL*Plus is installed.

• The ORACLE_HOME environment variable is set.

• The SQL*Plus help script files exist:

– HLPBLD.SQL - to drop and create new help tables.

– HELPDROP.SQL - to drop existing help tables.

– HELPUS.SQL - to populate the help tables with the help data.

2.2.4.1 Running the hlpbld.sql Script to Install Command-line Help
Run the provided SQL script, HLPBLD.SQL, to load command-line help.

1. Log in to SQL*Plus as the SYSTEM user with:

SQLPLUS SYSTEM

You are prompted to enter the password you have defined for the SYSTEM user.

2. In UNIX run the SQL script, HLPBLD.SQL, from SQL*Plus with:

@$ORACLE_HOME/sqlplus/admin/help/hlpbld.sql helpus.sql

In Windows run the SQL script, HLPBLD.SQL, from SQL*Plus with:

@%ORACLE_HOME%\SQLPLUS\ADMIN\HELP\HLPBLD.SQL HELPUS.SQL

Chapter 2
SQL*Plus Configuration

2-7

The HLPBLD.SQL script creates and loads the help tables.

2.2.4.2 Running the helpdrop.sql Script to Remove Command-line Help
Run the provided SQL script, HELPDROP.SQL, to remove the command-line help.

1. Log in to SQL*Plus as the SYSTEM user with:

SQLPLUS SYSTEM

You are prompted to enter the password you have defined for the SYSTEM user.

2. In UNIX run the SQL script, HELPDROP.SQL, from SQL*Plus with:

@$ORACLE_HOME/sqlplus/admin/help/helpdrop.sql

In Windows run the SQL script, HELPDROP.SQL, from SQL*Plus with:

@%ORACLE_HOME\SQLPLUS\ADMIN\HELP\HELPDROP.SQL

The HELPDROP.SQL script drops the help tables, and then disconnects.

2.2.5 About Configuring Oracle Net Services
If you plan to connect to a database other than the default, whether on the same
computer or another computer, you need to ensure that Oracle Net is installed, and
the database listener is configured and running. Oracle Net services are used by
SQL*Plus.

Oracle Net services and the database listener are installed by default during Oracle
Database installation. For further information about installing and configuring Oracle
Net, see the Oracle Database documentation at http://www.oracle.com/
technology/documentation.

Chapter 2
SQL*Plus Configuration

2-8

http://www.oracle.com/technology/documentation
http://www.oracle.com/technology/documentation

3
Starting SQL*Plus

This chapter describes how to start, login, and connect to a database, how to get help,
and how to exit SQL*Plus.

Specific topics discussed are:

• Login Username and Password

• About Connecting to a Database

• About Starting SQL*Plus

• About Exiting SQL*Plus Command-line

• SQLPLUS Program Syntax

3.1 Login Username and Password
When you start SQL*Plus, you need a username and password to login to an Oracle
Database schema. Your username and password identify you as an authorized user of
the Oracle Database schema.

The database administrator (DBA) is responsible for creating your database account
with the necessary privileges and giving you the username and password that enables
you to access your account.

Default logins are created and you are prompted for associated passwords during
Oracle Database installation. Some of the default login usernames created are:

• SYS

• SYSTEM

• HR

Logins are created and displayed in messages during Oracle Database installation.

For further information about the default logins, see Types of Oracle Database Users.

Once you have logged in, you can connect under a different username using the
CONNECT command. The username and password must be valid for the database.
For example, to connect the username TODD to the default database using the
password FOX, you could enter

CONNECT TODD

You are prompted to enter the password, FOX.

In the command-line interface, if you omit the username and password, SQL*Plus
prompts you for them. Because CONNECT first disconnects you from your current
database, you will be left unconnected to any database if you use an invalid username
and password in your CONNECT command.

If you log on or connect as a user whose account has expired, you are prompted to
change your password before you can connect.

3-1

If an account is locked, a message is displayed and connection as this user is not
permitted until the account is unlocked by your DBA.

You can use the DISCONNECT command to disconnect from a database without
leaving SQL*Plus.

3.1.1 Secure External Password Store
As a command-line alternative for large-scale deployments where applications use
password credentials to connect to databases, it is possible to store such credentials
in a client-side Oracle wallet. An Oracle wallet is a secure software container that is
used to store authentication and signing credentials.

Storing database password credentials in a client-side Oracle wallet eliminates the
need to embed usernames and passwords in application code, batch jobs, or scripts.
This reduces the risk of exposing passwords in the clear in scripts and application
code, and simplifies maintenance because you need not change your code each time
usernames and passwords change. In addition, not having to change application code
also makes it easier to enforce password management policies for these user
accounts.

When you configure a client to use the external password store, applications can use
the following syntax to connect to databases that use password authentication:

CONNECT /@database_alias

Note that you need not specify database login credentials in this CONNECT statement.
Instead your system looks for database login credentials in the client wallet.

See Also:

Oracle Database Administrator's Guide for information about configuring
your client to use secure external password store and for information about
managing credentials in it.

3.1.2 Expired Password
In the command-line interface, if your password has expired, SQL*Plus prompts you to
change it when you attempt to log in. You are logged in once you successfully change
your password.

3.1.3 About Changing your Password
In the command-line interface, you can change your password with the PASSWORD
command. See PASSWORD.

Chapter 3
Login Username and Password

3-2

3.2 About Connecting to a Database

Note:

A multitenant container database is the only supported architecture in Oracle
Database 20c. While the documentation is being revised, legacy terminology
may persist. In most cases, "database" and "non-CDB" refer to a CDB or
PDB, depending on context. In some contexts, such as upgrades, "non-CDB"
refers to a non-CDB from a previous release.

You must connect to an Oracle Database (instance) before you can query or modify
data in that database. You can connect to the default database and to other databases
accessible through your network. To connect to another database over a network, both
databases must have Oracle Net configured, and have compatible network drivers.
You must enter either a connection identifier or a net service name to connect to a
database other than the default.

The connection identifier or net service name is entered:

• as an argument to the SQLPLUS Program Syntax when starting a command-line
session.

• as an argument to the CONNECT command from a current session. For detailed
usage, see Accessing a Container in a CDB in the Oracle Database
Administrator's Guide.

3.2.1 Net Service Name
Your DBA is responsible for creating the databases you use and defining net service
names for them in the tnsnames.ora file.

A net service name definition in the tnsnames.ora file has the syntax:

net_service_name=
(DESCRIPTION=
(ADDRESS=(PROTOCOL=tcp)(HOST=host)(PORT=port))
(CONNECT_DATA=
(SERVICE_NAME=service_name)))

To use a net service name (alias), it must have an entry in the tnsnames.ora file on the
machine running SQL*Plus. An entry in tnsnames.ora is not required if you use a
connection identifier.

Example 3-1 The tnsnames.ora entry for the sales database

SALES1 =
(DESCRIPTION =
(ADDRESS=(PROTOCOL=tcp)(HOST=sales-server)(PORT=1521))
(CONNECT_DATA=
(SERVICE_NAME=sales.us.acme.com)))

Chapter 3
About Connecting to a Database

3-3

Example 3-2 Start a command-line session to the sales database using the net
service name

SQLPLUS hr@SALES1

See Configuration Parameters and Configuration and Administration of Oracle Net
Services for more information about database connections and net service name
definitions.

3.2.2 Full Connection Identifier
Depending on your configuration, use the full connection identifier syntax like:

(DESCRIPTION=
(ADDRESS=(PROTOCOL=tcp)(HOST=host)(PORT=port))
(CONNECT_DATA=
(SERVICE_NAME=service_name)))

The SERVICE_NAME is the global database name entered during database creation. It
combines a database name with a domain name. For example, the SERVICE_NAME
sales.us.acme.com has a database name of sales and a domain of us.acme.com.

An INSTANCE_NAME is the name you give to the database instance during creation. It
defaults to the SID you entered during database creation.

An Oracle System Identifier (SID) identifies a specific Oracle release 8.0 database
instance.

You can optionally use an INSTANCE_NAME in place of the SERVICE_NAME phrase.

Use a SID in place of the SERVICE_NAME when connecting to an Oracle release 8.0 or
earlier database.

Example 3-3 Full connection identifier for SALES1

SQLPLUS hr@\"(DESCRIPTION=
(ADDRESS=(PROTOCOL=tcp)(HOST=sales-server)(PORT=1521))
(CONNECT_DATA=
(SERVICE_NAME=sales.us.acme.com)))\"

3.2.3 Easy Connection Identifier
The easy or abbreviated connection identifier has the syntax:

[//]host[:port][/service_name]

Example 3-4 Start a command-line session to the sales database using the
easy connection identifier

sqlplus hr@\"sales-server:1521/sales.us.acme.com\"

Example 3-5 CONNECT to the sales database using the easy connection
identifier

When the password is omitted, the connect string needs to be quoted.

connect hr@"sales-server:1521/sales.us.acme.com"

Chapter 3
About Connecting to a Database

3-4

The easy connection identifier can be used wherever you can use a full connection
identifier, or a net service name. The easy syntax is less complex, and no
tnsnames.ora entry is required.

Note:

Starting with Oracle Database release 19c, the easy connect syntax has
improved functionality and is called Easy Connect Plus. For more
information, see About Easy Connect Plus.

3.2.4 Connectionless Session with /NOLOG
In the command-line interface, it is possible to start SQL*Plus without connecting to a
database. This is useful for performing some database administration tasks, writing
transportable scripts, or to use SQL*Plus editing commands to write or edit scripts.

You use the /NOLOG argument to the SQLPLUS command to start a connectionless
command-line session. After SQL*Plus has started you can connect to a database
with the CONNECT command.

Example 3-6 Start a connectionless SQL*Plus session with /NOLOG

SQLPLUS /NOLOG

3.3 About Starting SQL*Plus
If you are connecting to a remote Oracle database, make sure your Oracle Net
software is installed and working properly. For more information, see Testing and
Troubleshooting Oracle Net Services.

When you start a SQL*Plus command-line session, and after a CONNECT command
in that session, the site profile, glogin.sql, and the user profile file, login.sql, are
processed:

• After SQL*Plus starts and connects, and prior to displaying the first prompt.

• After SQL*Plus starts and connects, and prior to running a script specified on the
command line.

• Prior to the first prompt when /NOLOG is specified on the command line and no
connection is made.

The site profile file, glogin.sql is processed first, then the user profile file, login.sql.

3.3.1 About Starting Command-line SQL*Plus
To begin using SQL*Plus, you must first understand how to start and stop SQL*Plus.

1. Make sure that SQL*Plus has been installed on your computer.

2. Log on to the operating system (if required).

3. Enter the command, SQLPLUS, and press Return.

Chapter 3
About Starting SQL*Plus

3-5

Note:

Some operating systems expect you to enter commands in lowercase
letters. If your system expects lowercase, enter the SQLPLUS command
in lowercase.

SQLPLUS

SQL*Plus displays its version number, the current date, and copyright information,
and prompts you for your username (the text displayed on your system may differ
slightly):

SQL*Plus: Release 20.0.0.0.0 Production on Fri Jan 10 22:12:47 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle. All rights reserved.

4. Enter your username and press Return. SQL*Plus displays the prompt "Enter
password:".

5. Enter your password and press Return again. For your protection, your password
does not appear on the screen.

The process of entering your username and password is called logging in.
SQL*Plus displays the version of Oracle Database to which you connected and
the versions of available tools such as PL/SQL, and the local time of the last time
you logged on.

SQL*Plus: Release 20.0.0.0.0 Production on Fri Jan 10 22:12:47 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle. All rights reserved.

Last Successful login time: Thu Jan 02 2020 23:35:38 -07:00

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - 64bit
Production

Next, SQL*Plus displays the SQL*Plus command prompt:

SQL>

The SQL*Plus command prompt indicates that SQL*Plus is ready to accept your
commands.

If SQL*Plus does not start, you should see a message to help you correct the problem.

Example 3-7 Starting SQL*Plus

This example shows you how to start SQL*Plus:

Chapter 3
About Starting SQL*Plus

3-6

3.3.2 About Getting Command-line Help
To access command-line help for SQL*Plus commands, type HELP or ? followed by
the command name at the SQL command prompt or in the iSQL*Plus Workspace
Input area. See the HELP command for more information. For example:

HELP ACCEPT

To display a list of SQL*Plus commands, type HELP followed by either TOPICS or
INDEX. HELP TOPICS displays a single column list of SQL*Plus commands. HELP
INDEX displays a four column list of SQL*Plus commands which fits in a standard
screen. For example:

HELP INDEX

3.4 About Exiting SQL*Plus Command-line
If you cannot log in to SQL*Plus because your username or password is invalid or for
some other reason, SQL*Plus returns an error status equivalent to an EXIT FAILURE
command. See the EXIT command for further information.

When you are done working with SQL*Plus and wish to return to the operating system,
enter EXIT or QUIT at the SQL*Plus prompt, or enter the end of file character, Ctrl+D
on UNIX or Ctrl+Z on Windows.

SQL*Plus displays the version of Oracle Database from which you disconnected and
the versions of tools available through SQL*Plus before you return to the operating
system prompt.

3.5 SQL*Plus Program Syntax
You use the SQLPLUS command at the operating system prompt to start command-
line SQL*Plus:

SQLPLUS [[Options] [Logon|/NOLOG] [Start]]

where: Options has the following syntax:

 -H[ELP]|-V[ERSION]
 |[[-C[OMPATIBILITY] {x.y[.z]] [–F[ast]] [-M[ARKUP] markup_option] [-L[OGON]]
 [-NOLOGINTIME] [-R[ESTRICT] {1|2|3}] [-S[ILENT]]]

and markup_option consists of:

• csv_option

• html_option

csv_option has the following syntax:

CSV {ON|OFF} [DELIMI[TER] character] [QUOTE {ON|OFF}]

html_option has the following syntax:

HTML [ON|OFF] [HEAD text] [BODY text] [TABLE text] [ENTMAP {ON|OFF}] [SPOOL {ON|
OFF}] [PRE[FORMAT] {ON|OFF}]

Chapter 3
About Exiting SQL*Plus Command-line

3-7

where Logon has the following syntax:

 {username[/password][@connect_identifier]| / }
 [AS {SYSASM|SYSBACKUP|SYSDBA|SYSDG|SYSOPER|SYSRAC|SYSKM}][edition=value]

where Start has the following syntax:

 @{url|file_name[.ext]} [arg ...]

WARNING:

Including your password in plain text is a security risk. You can avoid this risk
by omitting the password, and entering it only when the system prompts for
it.

You have the option of entering logon. If you do not specify logon but do specify start,
SQL*Plus assumes that the first line of the script contains a valid logon. If neither start
nor logon are specified, SQL*Plus prompts for logon information.

3.5.1 Options
The following sections contain descriptions of SQLPLUS command options:

3.5.1.1 HELP Option
-H[ELP]

Displays the usage and syntax for the SQLPLUS command, and then returns control
to the operating system.

3.5.1.2 VERSION Option
-V[ERSION]

Displays the current version and level number for SQL*Plus, and then returns control
to the operating system.

3.5.1.3 COMPATIBILITY Option
-C[OMPATIBILITY] {x.y[.z]

Sets the value of the SQLPLUSCOMPATIBILITY system variable to the SQL*Plus
release specified by x.y[.z]. Where x is the version number, y is the release number,
and z is the update number. For example, 9.0.1 or 10.2. For more information, see the
SET SQLPLUSCOMPAT[IBILITY] {x.y[.z]}system variable.

3.5.1.4 LOGON Option
-L[OGON]

Specifies not to reprompt for username or password if the initial connection does not
succeed. This can be useful in operating system scripts that must either succeed or

Chapter 3
SQL*Plus Program Syntax

3-8

fail and you don't want to be reprompted for connection details if the database server
is not running.

3.5.1.5 FAST Option

–F[ast]

The FAST option improves general performance. This command line option changes
the values of the following default settings:

• ARRAYSIZE = 100

• LOBPREFETCH = 16384

• PAGESIZE = 50000

• ROWPREFETCH = 2

• STATEMENTCACHE = 20

3.5.1.6 MARKUP Options
-M[ARKUP]

You can use the MARKUP options to generate output in HTML or CSV (Character
Separated Values) format, through a query or script.

MARKUP currently supports HTML 4.0 transitional, and the CSV format.

Use SQLPLUS -MARKUP to produce output in HTML or CSV format.

Note:

Depending on your operating system, the complete markup_option clause for
the SQL*PLUS command may need to be contained in quotes.

For HTML output, use SQLPLUS -MARKUP HTML ON or SQLPLUS -MARKUP HTML
ON SPOOL ON to produce standalone web pages. SQL*Plus will generate complete
HTML pages automatically encapsulated with <HTML> and <BODY> tags. The HTML
tags in a spool file are closed when SPOOL OFF is executed or SQL*Plus exits.

The -SILENT and -RESTRICT command-line options may be useful when used in
conjunction with -MARKUP.

You can use MARKUP HTML ON to produce HTML output in either the <PRE> tag or
in an HTML table. Output to a table uses standard HTML <TABLE>, <TR> and <TD>
tags to automatically encode the rows and columns resulting from a query. Output to
an HTML table is the default behavior when the HTML option is set ON. You can
generate output using HTML <PRE> tags by setting PREFORMAT ON.

For CSV output, use SQLPLUS -MARKUP CSV ON to produce output in CSV format.
You can specify the delimiter character by using the DELIMITER option. You can also
output text without quotes by using QUOTE OFF.

Use the SHOW MARKUP command to view the status of MARKUP options.

Chapter 3
SQL*Plus Program Syntax

3-9

The SQLPLUS -MARKUP command has the same functionality as the SET MARKUP
command. These options are described in this section. For other information on the
SET MARKUP command, see the SET command.

CSV {ON|OFF}

CSV is a mandatory MARKUP argument which specifies that the type of output to be
generated is CSV. The optional CSV arguments, ON and OFF, specify whether or not
to generate CSV output. The default is OFF. You can turn CSV output ON and OFF as
required during a session.

HTML {ON|OFF}

HTML is a mandatory MARKUP argument which specifies that the type of output to be
generated is HTML. The optional HTML arguments, ON and OFF, specify whether or
not to generate HTML output. The default is OFF.

MARKUP HTML ON generates HTML output using the specified MARKUP options.

You can turn HTML output ON and OFF as required during a session.

HEAD text

The HEAD text option enables you to specify content for the <HEAD> tag. By default,
text includes a default in-line cascading style sheet and title.

If text includes spaces, it must be enclosed in quotes. SQL*Plus does not test this free
text entry for HTML validity. You must ensure that the text you enter is valid for the
HTML <HEAD> tag. This gives you the flexibility to customize output for your browser
or special needs.

BODY text

The BODY text option enables you to specify attributes for the <BODY> tag. By
default, there are no attributes. If text includes spaces, it must be enclosed in quotes.
SQL*Plus does not test this free text entry for HTML validity. You must ensure that the
text you enter is valid for the HTML <BODY> tag. This gives you the flexibility to
customize output for your browser or special needs.

TABLE text

The TABLE text option enables you to enter attributes for the <TABLE> tag. You can
use TABLE text to set HTML <TABLE> tag attributes such as BORDER,
CELLPADDING, CELLSPACING and WIDTH. By default, the <TABLE> WIDTH
attribute is set to 90% and the BORDER attribute is set to 1.

If text includes spaces, it must be enclosed in quotes. SQL*Plus does not test this free
text entry for HTML validity. You must ensure that the text you enter is valid for the
HTML <TABLE> tag. This gives you the flexibility to customize output for your browser
or special needs.

ENTMAP {ON|OFF}

ENTMAP ON or OFF specifies whether or not SQL*Plus replaces special characters <,
>, " and & with the HTML entities <, >, " and & respectively. ENTMAP
is set ON by default.

You can turn ENTMAP ON and OFF as required during a session. For example, with
ENTMAP OFF, SQL*Plus screen output is:

Chapter 3
SQL*Plus Program Syntax

3-10

SQL>PROMPT A > B
A > B

With ENTMAP ON, SQL*Plus screen output is:

SQL> PROMPT A > B
A > B

As entities in the <HEAD> and <BODY> tags are not mapped, you must ensure that
valid entities are used in the MARKUP HEAD and BODY options.

If entities are not mapped, web browsers may treat data as invalid HTML and all
subsequent output may display incorrectly. ENTMAP OFF enables users to write their
own HTML tags to customize output.

Note:

ENTMAP only takes effect when the HTML option is set ON. For more
information about using entities in your output, see the COLUMN command.

SPOOL {ON|OFF}

SPOOL ON or OFF specifies whether or not SQL*Plus writes the HTML opening tags,
<HTML> and <BODY>, and the closing tags, </BODY> and </HTML>, to the start and
end of each file created by the SQL*Plus SPOOL filename command. The default is
OFF.

You can turn SPOOL ON and OFF as required during a session.

Note:

It is important to distinguish between the SET MARKUP HTML SPOOL
option, and the SQLPLUS SPOOL filename command.

The SET MARKUP HTML SPOOL ON option enables the writing of the
<HTML> tag to the spool file. The spool file is not created, and the header
and footer tags enabled by the SET MARKUP HTML SPOOL ON option are
not written to the spool file until you issue the SQLPLUS SPOOL filename
command. See the SPOOL command for more information.

SQL*Plus writes several HTML tags to the spool file when you issue the SPOOL
filename command.

When you issue any of the SQL*Plus commands: EXIT, SPOOL OFF or SPOOL
filename, SQL*Plus appends the following end tags and closes the file:

</BODY>
</HTML>

You can specify <HEAD> tag contents and <BODY> attributes using the HEAD and
BODY options

PRE[FORMAT] {ON|OFF}

Chapter 3
SQL*Plus Program Syntax

3-11

PREFORMAT ON or OFF specifies whether or not SQL*Plus writes output to the
<PRE> tag or to an HTML table. The default is OFF, so output is written to a HTML
table by default. You can turn PREFORMAT ON and OFF as required during a
session.

Note:

To produce report output using the HTML <PRE> tag, you must set
PREFORMAT ON. For example:

SQLPLUS -M "HTML ON PREFORMAT ON"

or

SET MARKUP HTML ON PREFORMAT ON

3.5.1.7 MARKUP Usage Notes

MARKUP HTML ON

When MARKUP HTML ON PREFORMAT OFF is used, commands originally intended
to format paper reports have different meaning for reports intended for web tables:

• PAGESIZE is the number of rows in an HTML table, not the number of lines. Each
row may contain multiple lines. The TTITLE, BTITLE and column headings are
repeated every PAGESIZE rows.

• LINESIZE may have an effect on data if wrapping is on, or for very long data.
Depending on data size, output may be generated on separate lines, which a
browser may interpret as a space character.

• TTITLE and BTITLE content is output to three line positions: left, center and right,
and the maximum line width is preset to 90% of the browser window. These
elements may not align with the main output as expected due to the way they are
handled for web output. Entity mapping in TTITLE and BTITLE is the same as the
general ENTMAP setting specified in the MARKUP command.

• If you use a title in your output, then SQL*Plus starts a new HTML table for output
rows that appear after the title. Your browser may format column widths of each
table differently, depending on the width of data in each column.

• SET COLSEP, RECSEP and UNDERLINE only produce output in HTML reports
when PREFORMAT is ON.

MARKUP CSV ON

When MARKUP CSV ON is used, output from a query will be displayed in CSV format.

You can enable CSV markup while logging into a user session, by using the -
M[ARKUP] CSV ON option at the SQL*Plus command line. For more information, see
SQL*Plus Program Syntax. While logged in to a user session, you can enable CSV
markup by using the SET MARKUP CSV ON command.

You can specify the delimiter character by using the DELIMITER option. You can also
output text without quotes by using QUOTE OFF.

Chapter 3
SQL*Plus Program Syntax

3-12

3.5.1.8 No Login Time Option
-nologintime

The last login time for non-SYS users is displayed when you log on. This feature is on
by default. The last login time is displayed in local time format. You can use the -
nologintime option to disable this security feature. After you login, the last login
information is displayed

SQL*Plus: Release 20.0.0.0.0 Production on Fri Jan 10 22:12:47 2020
Version 20.2.0.0.0

Copyright (c) 1982, 2020, Oracle. All rights reserved.

Last Successful login time: Thu Jan 02 2020 23:35:38 -07:00

Connected to:
Oracle Database 20c Enterprise Edition Release 20.0.0.0.0 - Production
Version 20.2.0.0.0
With the Partitioning, Oracle Label Security, Data Mining and Real Application

Last login time does not show when making a connection with the CONNECT
command.

3.5.1.9 RESTRICT Option
-R[ESTRICT] {1|2|3}

Enables you to disable certain commands that interact with the operating system. This
is similar to disabling the same commands in the Product User Profile (PUP) table.
However, commands disabled with the -RESTRICT option are disabled even if there is
no connection to a server, and remain disabled until SQL*Plus terminates.

If no -RESTRICT option is active, than all commands can be used, unless disabled in
the PUP table.

If -RESTRICT 3 is used, then LOGIN.SQL is not read. GLOGIN.SQL is read but
restricted commands used will fail.

Table 3-1 Commands Disabled by Restriction Level

Command Level 1 Level 2 Level 3

EDIT disabled disabled disabled

GET disabled

HOST disabled disabled disabled

SAVE disabled disabled

SPOOL disabled disabled

START, @, @@ disabled

STORE disabled disabled

3.5.1.10 SILENT Option
-S[ILENT]

Chapter 3
SQL*Plus Program Syntax

3-13

Suppresses all SQL*Plus information and prompt messages, including the command
prompt, the echoing of commands, and the banner normally displayed when you start
SQL*Plus. If you omit username or password, SQL*Plus prompts for them, but the
prompts are not visible! Use SILENT to invoke SQL*Plus within another program so
that the use of SQL*Plus is invisible to the user.

SILENT is a useful mode for creating reports for the web using the SQLPLUS -
MARKUP command inside a CGI script or operating system script. The SQL*Plus
banner and prompts are suppressed and do not appear in reports created using the
SILENT option.

3.5.2 Logon
username[/password]

Represent the username and password with which you wish to start SQL*Plus and
connect to Oracle Database.

WARNING:

Including your password in plain text is a security risk. You can avoid this risk
by omitting the password, and entering it only when the system prompts for
it.

If you omit username and password, SQL*Plus prompts you for them. If you omit only
password, SQL*Plus prompts for it. In silent mode, username and password prompts
are not visible! Your username appears when you type it, but not your password.

@connect_identifier

Consists of an Oracle Net connect identifier. The exact syntax depends upon the
Oracle Net configuration. For more information, refer to the Oracle Net manual or
contact your DBA.

edition=value

The value for the Oracle Edition. An edition enables two or more versions of an object
in a database. It provides a staging area where changed objects can be loaded into
the database, compiled, and executed during uptime. This is particularly useful to
reduce downtime associated with patching an application. edition=value overrides any
edition value specified in the ORA_EDITION environment variable. For more detailed
information, see Using Edition-Based Redefinition.

/

Represents a default logon using operating system authentication. You cannot enter a
connect identifier if you use a default logon. In a default logon, SQL*Plus typically
attempts to log you in using the username OPS$name, where name is your operating
system username. Note that the prefix "OPS$" can be set to any other string of text.
For example, you may wish to change the settings in your INIT.ORA parameters file to
LOGONname or USERIDname. See Using Operating System Authentication for
information about operating system authentication.

AS {SYSASM |SYSBACKUP |SYSDBA |SYSDG |SYSOPER |SYSRAC |SYSKM}

Chapter 3
SQL*Plus Program Syntax

3-14

The AS clause enables privileged connections by users who have been granted
SYSASM, SYSBACKUP, SYSDBA, SYSDG, SYSOPER, SYSRAC or SYSKM system
privileges.

/NOLOG

Establishes no initial connection to Oracle Database. Before issuing any SQL
commands, you must issue a CONNECT command to establish a valid logon. Use /
NOLOG when you want to have a SQL*Plus script prompt for the username,
password, or database specification. The first line of this script is not assumed to
contain a logon.

3.5.3 Start
@{url|file_name[.ext]} [arg ...]

Specifies the name of a script and arguments to run. The script can be called from the
local file system or from a web server.

SQL*Plus passes the arguments to the script as if executing the file using the
SQL*Plus START command. If no file suffix (file extension) is specified, the suffix
defined by the SET SUFFIX command is used. The default suffix is .sql.

See the START command for more information.

Chapter 3
SQL*Plus Program Syntax

3-15

Part II
Using SQL*Plus

Part II helps you learn how to use SQL*Plus, how to tune SQL*Plus for better
performance, how to restrict access to tables and commands and provides overviews
of database administration tools and globalization support.

Part II contains the following chapters:

• SQL*Plus Basics

• Using Scripts in SQL*Plus

• Using Substitution Variables

• Formatting SQL*Plus Reports

• Generating HTML Reports from SQL*Plus

• Tuning SQL*Plus

• SQL*Plus Security

• Database Administration with SQL*Plus

• SQL*Plus Globalization Support

4
SQL*Plus Basics

This chapter helps you learn the basics of using SQL*Plus. It has the following topics:

• About Entering and Executing Commands

• About Listing a Table Definition

• About Listing PL/SQL Definitions

• Running SQL Commands

• About Running PL/SQL Blocks

• Running SQL*Plus Commands

• System Variables that Affect How Commands Run

• About Stopping a Command while it is Running

• About Running Operating System Commands

• About Pausing the Display

• About Saving Changes to the Database Automatically

• About Interpreting Error Messages

4.1 About Entering and Executing Commands
Unless stated otherwise, descriptions of commands are applicable to all user
interfaces.

In the command-line, type commands at the SQL*Plus prompt and press Return to
execute them.

Usually, you separate the words in a command with a space or a tab. You can use
additional spaces or tabs between words to make your commands more readable.

Case sensitivity is operating system specific. For the sake of clarity, all table names,
column names, and commands in this guide appear in capital letters.

You can enter three kinds of commands:

• SQL commands, for working with information in the database

• PL/SQL blocks, also for working with information in the database

• SQL*Plus commands, for formatting query results, setting options, and editing and
storing SQL commands and PL/SQL blocks

The manner in which you continue a command on additional lines, end a command, or
execute a command differs depending on the type of command you wish to enter and
run. Examples of how to run and execute these types of commands are found on the
following pages.

4-1

4.1.1 The SQL Buffer
The SQL buffer stores the most recently entered SQL command or PL/SQL block (but
not SQL*Plus commands). The command or block remains in the buffer until replaced
by the next SQL command or PL/SQL block. You can view the buffer contents with the
LIST command.

You can execute the command or block in the SQL buffer using the RUN or /(slash)
commands. RUN displays the command or block in the buffer before executing it. /
(slash) executes the command or block in the buffer without displaying it first. For
information about editing a command or block stored in the buffer see About Editing
Scripts in SQL*Plus Command-Line.

SQL*Plus does not store SQL*Plus commands, or the semicolon or slash characters
you type to execute a command in the SQL buffer.

4.1.2 About Executing Commands
In command-line SQL*Plus, you type a command and direct SQL*Plus to execute it by
pressing the Return key. SQL*Plus processes the command and re-displays the
command prompt when ready for another command.

4.2 About Listing a Table Definition
To see the definitions of each column in a given table or view, use the SQL*Plus
DESCRIBE command.

 Name Null? Type
 --- -------- ----------------
 EMPLOYEE_ID NOT NULL NUMBER(6)
 JOB_ID NOT NULL VARCHAR2(10)
 MANAGER_ID NUMBER(6)
 DEPARTMENT_ID NUMBER(4)
 LOCATION_ID NUMBER(4)
 COUNTRY_ID CHAR(2)
 FIRST_NAME VARCHAR2(20)
 LAST_NAME NOT NULL VARCHAR2(25)
 SALARY NUMBER(8,2)
 COMMISSION_PCT NUMBER(2,2)
 DEPARTMENT_NAME NOT NULL VARCHAR2(30)
 JOB_TITLE NOT NULL VARCHAR2(35)
 CITY NOT NULL VARCHAR2(30)
 STATE_PROVINCE VARCHAR2(25)
 COUNTRY_NAME VARCHAR2(40)
 REGION_NAME VARCHAR2(25)

Chapter 4
About Listing a Table Definition

4-2

Note:

DESCRIBE accesses information in the Oracle Database data dictionary.
You can also use SQL SELECT commands to access this and other
information in the database. See your Oracle Database SQL Language
Reference for details.

Example 4-1 Using the DESCRIBE Command

To list the column definitions of the columns in the sample view
EMP_DETAILS_VIEW, enter

DESCRIBE EMP_DETAILS_VIEW

4.3 About Listing PL/SQL Definitions
To see the definition of a function or procedure, use the SQL*Plus DESCRIBE
command.

Example 4-2 Using the DESCRIBE Command

To create and list the definition of a function called AFUNC, enter

create or replace function afunc (f1 varchar2, f2 number) return number as
begin
 if (length(f1) > f2) then
 return 1;
 else
 return 0;
 end if;
end;
/

FUNCTION created.

DESCRIBE afunc

FUNCTION afunc RETURNS NUMBER
Argument Name Type In/Out Default?
--------------- -------- -------- ---------
F1 VARCHAR2 IN
F2 NUMBER IN

4.4 Running SQL Commands
The SQL command language enables you to manipulate data in the database. See
your Oracle Database SQL Language Reference for information on individual SQL
commands.

1. At the command prompt, enter the first line of the command:

SELECT EMPLOYEE_ID, LAST_NAME, JOB_ID, SALARY

Chapter 4
About Listing PL/SQL Definitions

4-3

If you make a mistake, use Backspace to erase it and re-enter. When you are
done, press Return to move to the next line.

2. SQL*Plus displays a "2", the prompt for the second line. Enter the second line of
the command:

FROM EMP_DETAILS_VIEW WHERE SALARY > 12000;

The semicolon (;) means that this is the end of the command. Press Return or
click Execute. SQL*Plus processes the command and displays the results:

EMPLOYEE_ID LAST_NAME JOB_ID SALARY
----------- ------------------------- ---------- --------------
 100 King AD_PRES $24,000
 101 Kochhar AD_VP $17,000
 102 De Haan AD_VP $17,000
 145 Russell SA_MAN $14,000
 146 Partners SA_MAN $13,500
 201 Hartstein MK_MAN $13,000

6 rows selected.

After displaying the results and the number of rows retrieved, SQL*Plus command-
line displays the command prompt again. If you made a mistake and therefore did
not get the results shown, re-enter the command.

The headings may be repeated in your output, depending on the setting of a
system variable called PAGESIZE. Sometimes, the result from a query will not fit
the available page width. You can use the system variable, LINESIZE, to set the
width of the output in characters. See Setting Page Dimensions. Typically,
LINESIZE is set to 80 in command-line. Whether you see the message stating the
number of records retrieved depends on the setting of the system variable,
FEEDBACK. See System Variables that Affect How Commands Run for more
information.

Example 4-3 Entering a SQL Command

In this example, you will enter and execute a SQL command to display the employee
number, name, job, and salary of each employee in the EMP_DETAILS_VIEW view.

4.4.1 About Understanding SQL Command Syntax
Just as spoken language has syntax rules that govern the way we assemble words
into sentences, SQL*Plus has syntax rules that govern how you assemble words into
commands. You must follow these rules if you want SQL*Plus to accept and execute
your commands.

4.4.1.1 About Dividing a SQL Command into Separate Lines
You can divide your SQL command into separate lines at any points you wish, as long
as individual words are not split. Thus, you can enter the query you entered in
Example 4-3 on three lines:

SELECT EMPLOYEE_ID, LAST_NAME, JOB_ID
FROM EMP_DETAILS_VIEW
WHERE SALARY>12000;

Chapter 4
Running SQL Commands

4-4

In this guide, you will find most SQL commands divided into clauses, one clause on
each line. In Example 4-3, for instance, the SELECT and FROM clauses were placed
on separate lines. Many people find this clearly visible structure helpful, but you may
choose whatever line division makes commands most readable to you.

4.4.1.2 About Ending a SQL Command
You can end a SQL command in one of three ways:

• with a semicolon (;)

• with a slash (/) on a line by itself

• with a blank line

A semicolon (;) tells SQL*Plus that you want to run the command. Type the semicolon
at the end of the last line of the command, as shown in Example 4-3, and press Return
or click Execute. SQL*Plus processes the command and also stores the command in
the SQL buffer. See The SQL Buffer for details. If you mistakenly press Return before
typing the semicolon, SQL*Plus prompts you with a line number for the next line of
your command. Type the semicolon and press Return again or click Execute to run the
command.

A slash (/) on a line by itself also tells SQL*Plus that you wish to run the command.
Press Return at the end of the last line of the command. SQL*Plus prompts you with
another line number. Type a slash and press Return again or click Execute. SQL*Plus
executes the command and stores it in the buffer.

A blank line in a SQL statement or script tells SQL*Plus that you have finished
entering the command, but do not want to run it yet. Press Return at the end of the last
line of the command. SQL*Plus prompts you with another line number.

Note:

You can change the way blank lines appear and behave in SQL statements
using the SET SQLBLANKLINES command. For more information about
changing blank line behavior, see the SET command.

To execute commands this way, press Return again; SQL*Plus now prompts you with
the SQL*Plus command prompt. SQL*Plus does not execute the command, but stores
it in the SQL buffer. See The SQL Buffer for details. If you subsequently enter another
SQL command, SQL*Plus overwrites the previous command in the buffer.

4.5 About Running PL/SQL Blocks
You can also use PL/SQL subprograms (called blocks) to manipulate data in the
database. See your Oracle Database PL/SQL Language Reference for information on
individual PL/SQL statements.

SQL*Plus treats PL/SQL subprograms in the same manner as SQL commands,
except that a semicolon (;) or a blank line does not terminate and execute a block.
Terminate PL/SQL subprograms by entering a period (.) by itself on a new line. You
can also terminate and execute a PL/SQL subprogram by entering a slash (/) by itself
on a new line.

Chapter 4
About Running PL/SQL Blocks

4-5

You enter the mode for entering PL/SQL statements when:

• You type DECLARE or BEGIN. After you enter PL/SQL mode in this way, type the
remainder of your PL/SQL subprogram.

• You type a SQL command (such as CREATE PROCEDURE) that creates a stored
procedure. After you enter PL/SQL mode in this way, type the stored procedure
you want to create.

SQL*Plus stores the subprograms you enter in the SQL buffer. Execute the current
subprogram with a RUN or slash (/) command. A semicolon (;) is treated as part of the
PL/SQL subprogram and will not execute the command.

SQL*Plus sends the complete PL/SQL subprogram to Oracle Database for processing
(as it does SQL commands). See your Oracle Database PL/SQL Language Reference
for more information.

You might enter and execute a PL/SQL subprogram as follows:

DECLARE
 x NUMBER := 100;
 BEGIN
 FOR i IN 1..10 LOOP
 IF MOD (i, 2) = 0 THEN --i is even
 INSERT INTO temp VALUES (i, x, 'i is even');
 ELSE
 INSERT INTO temp VALUES (i, x, 'i is odd');
 END IF;
 x := x + 100;
 END LOOP;
 END;
 .
/

4.5.1 About Creating Stored Procedures
Stored procedures are PL/SQL functions, packages, or procedures. To create stored
procedures, you use the following SQL CREATE commands:

• CREATE FUNCTION

• CREATE LIBRARY

• CREATE PACKAGE

• CREATE PACKAGE BODY

• CREATE PROCEDURE

• CREATE TRIGGER

• CREATE TYPE

Entering any of these commands places you in PL/SQL mode, where you can enter
your PL/SQL subprogram. For more information, see About Running PL/SQL Blocks.
When you are done typing your PL/SQL subprogram, enter a period (.) on a line by
itself to terminate PL/SQL mode. To run the SQL command and create the stored
procedure, you must enter RUN or slash (/). A semicolon (;) will not execute these
CREATE commands.

When you use CREATE to create a stored procedure, a message appears if there are
compilation errors. To view these errors, you use SHOW ERRORS. For example:

Chapter 4
About Running PL/SQL Blocks

4-6

SHOW ERRORS PROCEDURE ASSIGNVL

See SHOW for more information.

To execute a PL/SQL statement that references a stored procedure, you can use the
SQL*Plus EXECUTE command. EXECUTE runs the PL/SQL statement that you enter
immediately after the command. For example:

EXECUTE EMPLOYEE_MANAGEMENT.NEW_EMP('BLAKE')

See EXECUTE for more information.

4.6 Running SQL*Plus Commands
You can use SQL*Plus commands to manipulate SQL commands and PL/SQL blocks
and to format and print query results. SQL*Plus treats SQL*Plus commands differently
than SQL commands or PL/SQL blocks.

To speed up command entry, you can abbreviate many SQL*Plus commands. For
information on and abbreviations of all SQL*Plus commands, see SQL*Plus Command
Reference.

1. Enter this SQL*Plus command:

COLUMN SALARY FORMAT $99,999 HEADING 'MONTHLY SALARY'

If you make a mistake, use Backspace to erase it and re-enter. When you have
entered the line, press Return. SQL*Plus notes the new format and displays the
SQL*Plus command prompt again, ready for a new command.

2. Enter the following query and press Return to run it:

SELECT EMPLOYEE_ID, LAST_NAME, JOB_ID, SALARY
FROM EMP_DETAILS_VIEW WHERE SALARY > 12000;

EMPLOYEE_ID LAST_NAME JOB_ID MONTHLY SALARY
----------- ------------------------- ---------- --------------
 100 King AD_PRES $24,000
 101 Kochhar AD_VP $17,000
 102 De Haan AD_VP $17,000
 145 Russell SA_MAN $14,000
 146 Partners SA_MAN $13,500
 201 Hartstein MK_MAN $13,000

6 rows selected.

Example 4-4 Entering a SQL*Plus Command

This example shows how you might enter a SQL*Plus command to change the format
used to display the column SALARY of the sample view, EMP_DETAILS_VIEW.

The COLUMN command formatted the column SALARY with a dollar sign ($) and a
comma (,) and gave it a new heading.

4.6.1 About Understanding SQL*Plus Command Syntax
SQL*Plus commands have a different syntax from SQL commands or PL/SQL blocks.

Chapter 4
Running SQL*Plus Commands

4-7

You do not need to end a SQL*Plus command with a semicolon. When you finish
entering the command, you can just press Return or click Execute. There is no need to
end a SQL*Plus command with a semicolon.

4.6.1.1 About Continuing a Long SQL*Plus Command on Additional Lines
You can continue a long SQL*Plus command by typing a hyphen at the end of the line
and pressing Return. If you wish, you can type a space before typing the hyphen.
SQL*Plus displays a right angle-bracket (>) as a prompt for each additional line.

For example:

COLUMN SALARY FORMAT $99,999 -
HEADING 'MONTHLY SALARY'

Since SQL*Plus identifies the hyphen as a continuation character, entering a hyphen
within a SQL statement is ignored by SQL*Plus. SQL*Plus does not identify the
statement as a SQL statement until after the input processing has joined the lines
together and removed the hyphen. For example, entering the following:

SELECT 200 -
100 FROM DUAL;

returns the error:

SELECT 200 100 FROM DUAL
 *
ERROR at line 1:
ORA-00923: FROM keyword not found where expected

To ensure that the statement is interpreted correctly, reposition the hyphen from the
end of the first line to the beginning of the second line.

4.7 System Variables that Affect How Commands Run
The SQL*Plus SET command controls many variables—called SET variables or
system variables—which affect the way SQL*Plus runs your commands. System
variables control a variety of conditions within SQL*Plus, including default column
widths for your output, whether SQL*Plus displays the number of records selected by
a command, and your page size.

The examples in this guide are based on running SQL*Plus with the system variables
at their default settings. Depending on the settings of your system variables, your
output may appear slightly different than the output shown in the examples. (Your
settings might differ from the default settings if you have a SQL*Plus LOGIN file on
your computer.)

See the SET command for more information on system variables and their default
settings. See SQL*Plus Configuration and SQLPLUS Program Syntax for details on
the SQL*Plus LOGIN file.

To list the current setting of a system variable, enter SHOW followed by the variable
name. See the SHOW command for information on other items you can list with
SHOW.

Chapter 4
System Variables that Affect How Commands Run

4-8

4.8 About Stopping a Command while it is Running
Suppose you have displayed the first page of a 50 page report and decide you do not
need to see the rest of it. Press Cancel, the system's interrupt character, which is
usually CTRL+C. SQL*Plus stops the display.

Note:

Pressing Cancel does not stop the printing of a file that you have sent to a
printer with the OUT clause of the SQL*Plus SPOOL command. (You will
learn about printing query results in Formatting SQL*Plus Reports.) You can
stop the printing of a file through your operating system. For more
information, see your operating system's installation and user's guide.

4.9 About Running Operating System Commands
You can execute an operating system command from the SQL*Plus command prompt.
This is useful when you want to perform a task such as listing existing operating
system files.

To run an operating system command, enter the SQL*Plus command HOST followed
by the operating system command. For example, this SQL*Plus command runs the
command, DIRECTORY *.SQL:

HOST DIRECTORY *.SQL

When the command finishes running, the SQL*Plus command prompt appears again.

Note:

Operating system commands entered from a SQL*Plus session using the
HOST command do not affect the current SQL*Plus session. For example,
setting an operating system environment variable does not affect the current
SQL*Plus session, but may affect SQL*Plus sessions started subsequently.

You can suppress access to the HOST command. For more information
about suppressing the HOST command see SQL*Plus Security.

4.10 About Pausing the Display
You can use the PAUSE system variable to stop and examine the contents of the
screen after each page during the display of a long report, or during the display of a
table definition with many columns.

You can use SET PAUSE to pause output after displaying each screen of a query or
report. See SET PAU[SE] {ON | OFF | text} for more information.

Chapter 4
About Stopping a Command while it is Running

4-9

4.11 About Saving Changes to the Database Automatically
You can specify changes you wish to make to the information stored in the database
using the SQL Database Manipulation Language (DML) commands UPDATE,
INSERT, and DELETE—which can be used independently or within a PL/SQL block.
These changes are not made permanent until you enter a SQL COMMIT command or
a SQL Database Control Language (DCL) or Database Definition Language (DDL)
command (such as CREATE TABLE), or use the autocommit feature. The SQL*Plus
autocommit feature causes pending changes to be committed after a specified number
of successful SQL DML transactions. (A SQL DML transaction is either an UPDATE,
INSERT, or DELETE command, or a PL/SQL block.)

You control the autocommit feature with the SQL*Plus AUTOCOMMIT system
variable. Regardless of the AUTOCOMMIT setting, changes are committed when you
exit SQL*Plus successfully.

See Also:

SET EXITC[OMMIT] {ON | OFF}

COMMIT COMPLETE

When the autocommit feature is turned on, you cannot roll back changes to the
database.

To commit changes to the database after a number of SQL DML commands, for
example, 10, enter

SET AUTOCOMMIT 10

SQL*Plus counts SQL DML commands as they are executed and commits the
changes after each 10th SQL DML command.

Note:

For this feature, a PL/SQL block is regarded as one transaction, regardless
of the actual number of SQL commands contained within it.

To turn the autocommit feature off again, enter the following command:

SET AUTOCOMMIT OFF

To confirm that AUTOCOMMIT is now set to OFF, enter the following SHOW
command:

SHOW AUTOCOMMIT

AUTOCOMMIT OFF

Chapter 4
About Saving Changes to the Database Automatically

4-10

See SET AUTO[COMMIT]{ON | OFF | IMM[EDIATE] | n} for more information.

Example 4-5 Turning Autocommit On

To turn the autocommit feature on, enter

SET AUTOCOMMIT ON

Alternatively, you can enter the following to turn the autocommit feature on:

SET AUTOCOMMIT IMMEDIATE

Until you change the setting of AUTOCOMMIT, SQL*Plus automatically commits
changes from each SQL DML command that specifies changes to the database. After
each autocommit, SQL*Plus displays the following message:

4.12 About Interpreting Error Messages
If SQL*Plus detects an error in a command, it displays an error message. See
SQL*Plus Error Messages for a list of SQL*Plus error messages.

SP2-0310: unable to open file "emplyyes.sql"

You will often be able to figure out how to correct the problem from the message
alone. If you need further explanation, take one of the following steps to determine the
cause of the problem and how to correct it:

• If the error is a numbered error beginning with the letters "SP2", look up the
SQL*Plus message in SQL*Plus Error Messages.

• If the error is a numbered error beginning with the letters "CPY" look up the
SQL*Plus COPY command message in COPY Command Messages.

• If the error is a numbered error beginning with the letters "ORA", look up the
Oracle Database message in the Oracle Database Error Messages guide or in the
platform-specific Oracle documentation provided for your operating system.

• If the error is a numbered error beginning with the letters "PLS", look up the Oracle
Database message in the Oracle Database PL/SQL Language Reference.

If the error is unnumbered, look up correct syntax for the command that generated the
error in SQL*Plus Command Reference for a SQL*Plus command, in the Oracle
Database SQL Language Reference for a SQL command, or in the Oracle Database
PL/SQL Language Reference for a PL/SQL block. Otherwise, contact your DBA.

Example 4-6 Interpreting an Error Message

If you attempt to execute a file that does not exist or is unavailable by entering:

START EMPLYYES.SQL

An error message indicates that the table does not exist:

Chapter 4
About Interpreting Error Messages

4-11

5
Using Scripts in SQL*Plus

This chapter helps you learn to write and edit scripts containing SQL*Plus commands,
SQL commands, and PL/SQL blocks. It covers the following topics:

• About Editing Scripts

• About Editing Scripts in SQL*Plus Command-Line

• About Placing Comments in Scripts

• Running Scripts

• Nesting Scripts

• About Exiting from a Script with a Return Code

Read this chapter while sitting at your computer and try out the examples shown.
Before beginning, make sure you have access to the sample schema described in
SQL*Plus Overview.

5.1 About Editing Scripts
In SQL*Plus command-line, the use of an external editor in combination with the @,
@@ or START commands is an effective method of creating and executing generic
scripts. You can write scripts which contain SQL*Plus, SQL and PL/SQL commands,
which you can retrieve and edit. This is especially useful for storing complex
commands or frequently used reports.

5.1.1 Writing Scripts with a System Editor
Your operating system may have one or more text editors that you can use to write
scripts. You can run your operating system's default text editor without leaving the
SQL*Plus command-line by entering the EDIT command.

You can use the SQL*Plus DEFINE command to define the variable, _EDITOR, to
hold the name of your preferred text editor. For example, to define the editor used by
EDIT to be vi, enter the following command:

DEFINE _EDITOR = vi

You can include an editor definition in your user or site profile so that it is always
enabled when you start SQL*Plus. See SQL*Plus Configuration, and the DEFINE and
EDIT commands for more information.

To create a script with a text editor, enter EDIT followed by the name of the file to edit
or create, for example:

EDIT SALES

EDIT adds the filename extension .SQL to the name unless you specify the file
extension. When you save the script with the text editor, it is saved back into the same
file. EDIT lets you create or modify scripts.

5-1

You must include a semicolon at the end of each SQL command and a slash (/) on a
line by itself after each PL/SQL block in the file. You can include multiple SQL
commands and PL/SQL blocks in a script.

Example 5-1 Using a System Editor to Write a SQL Script

Suppose you have composed a query to display a list of salespeople and their
commissions. You plan to run it once a month to keep track of how well each
employee is doing.

To compose and save the query using your system editor, invoke your editor and
create a file to hold your script:

EDIT SALES

Enter each of the following lines in your editor. Do not forget to include the semicolon
at the end of the SQL statement:

COLUMN LAST_NAME HEADING 'LAST NAME'
COLUMN SALARY HEADING 'MONTHLY SALARY' FORMAT $99,999
COLUMN COMMISSION_PCT HEADING 'COMMISSION %' FORMAT 90.90
SELECT LAST_NAME, SALARY, COMMISSION_PCT
FROM EMP_DETAILS_VIEW
WHERE JOB_ID='SA_MAN';

The format model for the column COMMISSION_PCT tells SQL*Plus to display an
initial zero for decimal values, and a zero instead of a blank when the value of
COMMISSION_PCT is zero for a given row. Format models and the COLUMN
command are described in more detail in the COLUMN command and in Format
Models.

Now use your editor's save command to store your query in a file called SALES.SQL.

5.2 About Editing Scripts in SQL*Plus Command-Line
You can use a number of SQL*Plus commands to edit the SQL command or PL/SQL
block currently stored in the buffer.

Table 5-1 lists the SQL*Plus commands that allow you to examine or change the
command in the buffer without re-entering the command.

Table 5-1 SQL*Plus Editing Commands

Command Abbreviation Purpose

APPEND text A text
adds text at the end of the current line

CHANGE/old/new C/old/new
changes old to new in the current line

CHANGE/text C/text
deletes text from the current line

CLEAR BUFFER CL BUFF
deletes all lines

DEL
(none) deletes the current line

Chapter 5
About Editing Scripts in SQL*Plus Command-Line

5-2

Table 5-1 (Cont.) SQL*Plus Editing Commands

Command Abbreviation Purpose

DEL n
(none) deletes line n

DEL *
(none) deletes the current line

DEL n *
(none) deletes line n through the current line

DEL LAST
(none) deletes the last line

DEL m n
(none) deletes a range of lines (m to n)

DEL * n
(none) deletes the current line through line n

INPUT I
adds one or more lines

INPUT text I text
adds a line consisting of text

LIST ; or L
lists all lines in the SQL buffer

LIST n L n or n
lists line n

LIST * L *
lists the current line

LIST n * L n *
lists line n through the current line

LIST LAST L LAST
lists the last line

LIST m n L m n
lists a range of lines (m to n)

LIST * n L * n
lists the current line through line n

These are useful if you want to correct or modify a command you have entered.

5.2.1 Listing the Buffer Contents
The SQL buffer contains the last SQL or PL/SQL command. Any editing command
other than LIST and DEL affects only a single line in the buffer. This line is called the
current line. It is marked with an asterisk when you list the current command or block.

SELECT EMPLOYEE_ID, LAST_NAME, JOB_ID, SALARY
 2 FROM EMP_DETAILS_VIEW
 3* WHERE SALARY>12000

Chapter 5
About Editing Scripts in SQL*Plus Command-Line

5-3

Notice that the semicolon you entered at the end of the SELECT command is not
listed. This semicolon is necessary to indicate the end of the command when you
enter it, but it is not part of the SQL command and SQL*Plus does not store it in the
SQL buffer.

Example 5-2 Listing the Buffer Contents

Suppose you want to list the current command. Use the LIST command as shown. (If
you have exited SQL*Plus or entered another SQL command or PL/SQL block since
following the steps in Example 4-3, perform the steps in that example again before
continuing.)

LIST

5.2.2 Editing the Current Line
The SQL*Plus CHANGE command enables you to edit the current line. Various
actions determine which line is the current line:

• LIST a given line to make it the current line.

• When you LIST or RUN the command in the buffer, the last line of the command
becomes the current line. (Note, that using the slash (/) command to run the
command in the buffer does not affect the current line.)

• If you get an error, the error line automatically becomes the current line.

SELECT EMPLOYEE_ID, LAST_NAME, JO_ID, SALARY
 *
ERROR at line 1:
ORA-00904: invalid column name

Examine the error message; it indicates an invalid column name in line 1 of the query.
The asterisk shows the point of error—the mis-typed column JOB_ID.

Instead of re-entering the entire command, you can correct the mistake by editing the
command in the buffer. The line containing the error is now the current line. Use the
CHANGE command to correct the mistake. This command has three parts, separated
by slashes or any other non-alphanumeric character:

• the word CHANGE or the letter C

• the sequence of characters you want to change

• the replacement sequence of characters

The CHANGE command finds the first occurrence in the current line of the character
sequence to be changed and changes it to the new sequence. You do not need to use
the CHANGE command to re-enter an entire line.

1* SELECT EMPLOYEE_ID, FIRST_NAME, JOB_ID, SALARY

Now that you have corrected the error, you can use the RUN command to run the
command again:

RUN

Chapter 5
About Editing Scripts in SQL*Plus Command-Line

5-4

SQL*Plus correctly displays the query and its result:

 1 SELECT EMPLOYEE_ID, LAST_NAME, JOB_ID, SALARY
 2 FROM EMP_DETAILS_VIEW
 3* WHERE JOB_ID='SA_MAN'

EMPLOYEE_ID LAST_NAME JOB_ID MONTHLY SALARY
----------- ------------------------- ---------- --------------
 145 Russell SA_MAN $14,000
 146 Partners SA_MAN $13,500
 147 Errazuriz SA_MAN $12,000
 148 Cambrault SA_MAN $11,000
 149 Zlotkey SA_MAN $10,500

Note that the column SALARY retains the format you gave it in Example 4-4. (If you
have left SQL*Plus and started again since performing Example 4-4 the column has
reverted to its original format.)

See CHANGE for information about the significance of case in a CHANGE command
and on using wildcards to specify blocks of text in a CHANGE command.

Example 5-3 Making an Error in Command Entry

Suppose you try to select the JOB_ID column but mistakenly enter it as JO_ID. Enter
the following command, purposely misspelling JOB_ID in the first line:

SELECT EMPLOYEE_ID, LAST_NAME, JO_ID, SALARY
FROM EMP_DETAILS_VIEW
WHERE JOB_ID='SA_MAN';

You see this message on your screen:

Example 5-4 Correcting the Error

To change JO_ID to JOB_ID, change the line with the CHANGE command:

CHANGE /JO_ID/JOB_ID

The corrected line appears on your screen:

5.2.3 Appending Text to a Line
To add text to the end of a line in the buffer, use the APPEND command.

1. Use the LIST command (or the line number) to list the line you want to change.

2. Enter APPEND followed by the text you want to add. If the text you want to add
begins with a blank, separate the word APPEND from the first character of the text
by two blanks: one to separate APPEND from the text, and one to go into the
buffer with the text.

Example 5-5 Appending Text to a Line

To append a space and the clause DESC to line 4 of the current query, first list line 4:

Chapter 5
About Editing Scripts in SQL*Plus Command-Line

5-5

LIST 4

4* ORDER BY SALARY

Next, enter the following command (be sure to type two spaces between APPEND and
DESC):

APPEND DESC

4* ORDER BY SALARY DESC

Type RUN to verify the query:

 1 SELECT EMPLOYEE_ID, LAST_NAME, JOB_ID, SALARY
 2 FROM EMP_DETAILS_VIEW
 3 WHERE JOB_ID='SA_MAN'
 4* ORDER BY SALARY DESC

EMPLOYEE_ID LAST_NAME JOB_ID MONTHLY SALARY
----------- ------------------------- ---------- --------------
 145 Russell SA_MAN $14,000
 146 Partners SA_MAN $13,500
 147 Errazuriz SA_MAN $12,000
 148 Cambrault SA_MAN $11,000
 149 Zlotkey SA_MAN $10,500

5.2.4 Adding a New Line
To insert a new line after the current line, use the INPUT command.

To insert a line before line 1, enter a zero ("0") and follow the zero with text. SQL*Plus
inserts the line at the beginning of the buffer and all lines are renumbered starting at 1.

0 SELECT EMPLOYEE_ID

4

Enter the new line. Then press Return.

4 ORDER BY SALARY

SQL*Plus prompts you again for a new line:

5

Press Return again to indicate that you will not enter any more lines, and then use
RUN to verify and re-run the query.

 1 SELECT EMPLOYEE_ID, LAST_NAME, JOB_ID, SALARY
 2 FROM EMP_DETAILS_VIEW
 3 WHERE JOB_ID='SA_MAN'
 4* ORDER BY SALARY

Chapter 5
About Editing Scripts in SQL*Plus Command-Line

5-6

EMPLOYEE_ID LAST_NAME JOB_ID MONTHLY SALARY
----------- ------------------------- ---------- --------------
 149 Zlotkey SA_MAN $10,500
 148 Cambrault SA_MAN $11,000
 147 Errazuriz SA_MAN $12,000
 146 Partners SA_MAN $13,500
 145 Russell SA_MAN $14,000

Example 5-6 Adding a Line

Suppose you want to add a fourth line to the SQL command you modified in
Example 5-4. Since line 3 is already the current line, enter INPUT and press Return.

INPUT

SQL*Plus prompts you for the new line:

5.2.5 Deleting Lines
Use the DEL command to delete lines in the buffer. Enter DEL specifying the line
numbers you want to delete.

Suppose you want to delete the current line to the last line inclusive. Use the DEL
command as shown.

DEL * LAST

DEL makes the following line of the buffer (if any) the current line.

See DEL for more information.

5.3 About Placing Comments in Scripts
You can enter comments in a script in three ways:

• using the SQL*Plus REMARK command for single line comments.

• using the SQL comment delimiters /*... */ for single or multi line comments.

• using ANSI/ISO (American National Standards Institute/International Standards
Organization) comments - - for single line comments.

Comments entered at the command-line are not stored in the SQL buffer.

5.3.1 Using the REMARK Command
Use the REMARK command on a line by itself in a script, followed by comments on
the same line. To continue the comments on additional lines, enter additional
REMARK commands. Do not place a REMARK command between different lines of a
single SQL command.

REMARK Commission Report;
REMARK to be run monthly.;
COLUMN LAST_NAME HEADING 'LAST_NAME';
COLUMN SALARY HEADING 'MONTHLY SALARY' FORMAT $99,999;
COLUMN COMMISSION_PCT HEADING 'COMMISSION %' FORMAT 90.90;
REMARK Includes only salesmen;

Chapter 5
About Placing Comments in Scripts

5-7

SELECT LAST_NAME, SALARY, COMMISSION_PCT
FROM EMP_DETAILS_VIEW
WHERE JOB_ID='SA_MAN';

5.3.2 Using /*...*/
Enter the SQL comment delimiters, /*...*/, on separate lines in your script, on the same
line as a SQL command, or on a line in a PL/SQL block.

You must enter a space after the slash-asterisk(/*) beginning a comment.

The comments can span multiple lines, but cannot be nested within one another:

/* Commission Report
 to be run monthly. */
COLUMN LAST_NAME HEADING 'LAST_NAME';
COLUMN SALARY HEADING 'MONTHLY SALARY' FORMAT $99,999;
COLUMN COMMISSION_PCT HEADING 'COMMISSION %' FORMAT 90.90;
REMARK Includes only salesmen;
SELECT LAST_NAME, SALARY, COMMISSION_PCT
FROM EMP_DETAILS_VIEW
/* Include only salesmen.*/
WHERE JOB_ID='SA_MAN';

5.3.3 Using - -
You can use ANSI/ISO "- -" style comments within SQL statements, PL/SQL blocks, or
SQL*Plus commands. Since there is no ending delimiter, the comment cannot span
multiple lines.

For PL/SQL and SQL, enter the comment after a command on a line, or on a line by
itself:

-- Commissions report to be run monthly
DECLARE --block for reporting monthly sales

For SQL*Plus commands, you can only include "- -" style comments if they are on a
line by themselves. For example, these comments are legal:

-- set maximum width for LONG to 777
SET LONG 777

This comment is illegal:

SET LONG 777 -- set maximum width for LONG to 777

If you enter the following SQL*Plus command, SQL*Plus interprets it as a comment
and does not execute the command:

-- SET LONG 777

5.3.4 Notes on Placing Comments
SQL*Plus does not have a SQL or PL/SQL command parser. It scans the first few
keywords of each new statement to determine the command type, SQL, PL/SQL or
SQL*Plus. Comments in some locations can prevent SQL*Plus from correctly
identifying the command type, giving unexpected results. The following usage notes
may help you to use SQL*Plus comments more effectively:

Chapter 5
About Placing Comments in Scripts

5-8

1. Do not put comments within the first few keywords of a statement. For example:

CREATE OR REPLACE
 2 /* HELLO */
 3 PROCEDURE HELLO AS
 4 BEGIN
 5 DBMS_OUTPUT.PUT_LINE('HELLO');
 6 END;
 7 /

Warning: Procedure created with compilation errors.

The location of the comment prevents SQL*Plus from recognizing the command
as a command. SQL*Plus submits the PL/SQL block to the server when it sees the
slash "/" at the beginning of the comment, which it interprets as the "/" statement
terminator. Move the comment to avoid this error. For example:

 CREATE OR REPLACE PROCEDURE
 2 /* HELLO */
 3 HELLO AS
 4 BEGIN
 5 DBMS_OUTPUT.PUT_LINE('HELLO');
 6 END;
 7 /

Procedure created.

2. Do not put comments after statement terminators (period, semicolon or slash). For
example, if you enter:

SELECT 'Y' FROM DUAL; -- TESTING

You get the following error:

SELECT 'Y' FROM DUAL; -- TESTING
 *
ERROR at line 1:
ORA-00911: invalid character

SQL*Plus expects no text after a statement terminator and is unable to process
the command.

3. Do not put statement termination characters at the end of a comment line or after
comments in a SQL statement or a PL/SQL block. For example, if you enter:

SELECT *
-- COMMENT;

You get the following error:

-- COMMENT
 *
ERROR at line 2:
ORA-00923: FROM keyword not found where expected

The semicolon is interpreted as a statement terminator and SQL*Plus submits the
partially formed SQL command to the server for processing, resulting in an error.

Chapter 5
About Placing Comments in Scripts

5-9

4. Do not use ampersand characters '&' in comments in a SQL statement or PL/SQL
block. For example, if you enter a script such as:

SELECT REGION_NAME, CITY
/* THIS & THAT */
FROM EMP_DETAILS_VIEW
WHERE SALARY>12000;

SQL*Plus interprets text after the ampersand character "&" as a substitution
variable and prompts for the value of the variable, &that:

Enter value for that:
old 2: /* THIS & THAT */
new 2: /* THIS */

REGION_NAME CITY
------------------------- ------------------------------
Americas Seattle
Americas Seattle
Americas Seattle
Europe Oxford
Europe Oxford
Americas Toronto
6 rows selected.

You can SET DEFINE OFF to prevent scanning for the substitution character.

For more information on substitution and termination characters, see DEFINE,
SQLTERMINATOR and SQLBLANKLINES in the SET command.

5.4 Running Scripts
The START command retrieves a script and runs the commands it contains. Use
START to run a script containing SQL commands, PL/SQL blocks, and SQL*Plus
commands. You can have many commands in the file. Follow the START command
with the name of the file:

START file_name

SQL*Plus assumes the file has a .SQL extension by default.

Chapter 5
Running Scripts

5-10

Note:

Starting from Oracle Database release 19c, version 19.3, executing a script
that contains a $ (dollar) symbol results in an error on Windows because
the $ symbol denotes an environment variable in Linux and Unix.

For example:

SQL>@C:\User\my$script.sql

LAST NAME MONTHLY SALARY COMMISSION %
------------------------- -------------- ------------
Russell $14,000 0.40
Partners $13,500 0.30
Errazuriz $12,000 0.30
Cambrault $11,000 0.30
Zlotkey $10,500 0.20

You can also use the @ (at sign) command to run a script:

@SALES

The @ and @@ commands list and run the commands in the specified script in the
same manner as START. SET ECHO affects the @ and @@ commands in the same
way as it affects the START command.

To see the commands as SQL*Plus "enters" them, you can SET ECHO ON. The
ECHO system variable controls the listing of the commands in scripts run with the
START, @ and @@ commands. Setting the ECHO variable OFF suppresses the
listing.

START, @ and @@ leave the last SQL command or PL/SQL block of the script in the
buffer.

Example 5-7 Running a Script

To retrieve and run the command stored in SALES.SQL, enter

START SALES

SQL*Plus runs the commands in the file SALES and displays the results of the
commands on your screen, formatting the query results according to the SQL*Plus
commands in the file:

5.4.1 Running a Script as You Start SQL*Plus
To run a script as you start SQL*Plus, use one of the following options:

• Follow the SQLPLUS command with your username, a slash, a space, @, and the
name of the file:

SQLPLUS HR @SALES

SQL*Plus starts, prompts for your password and runs the script.

Chapter 5
Running Scripts

5-11

• Include your username as the first line of the file. Follow the SQLPLUS command
with @ and the filename. SQL*Plus starts, prompts for your password and runs the
file.

5.5 Nesting Scripts
To run a series of scripts in sequence, first create a script containing several START
commands, each followed by the name of a script in the sequence. Then run the script
containing the START commands. For example, you could include the following
START commands in a script named SALESRPT:

START Q1SALES
START Q2SALES
START Q3SALES
START Q4SALES
START YRENDSLS

Note:

The @@ command may be useful in this example. See the @@ (double at
sign) command for more information.

5.6 About Exiting from a Script with a Return Code
You can include an EXIT command in a script to return a value when the script
finishes. See the EXIT command for more information.

You can include a WHENEVER SQLERROR command in a script to automatically exit
SQL*Plus with a return code should your script generate a SQL error. Similarly, you
can include a WHENEVER OSERROR command to automatically exit should an
operating system error occur. See the WHENEVER SQLERROR command, and the
WHENEVER OSERROR command for more information.

Chapter 5
Nesting Scripts

5-12

6
Using Substitution Variables

This chapter explains how SQL*Plus substitution variables work and where they can
be used. It shows the relationship between the three types of variables (substitution,
bind, and system) used in SQL*Plus.

This topics covered are:

• Defining Substitution Variables

• About Using Predefined Variables

• Referencing Substitution Variables

• System Variables Influencing Substitution Variables

• Passing Parameters through the START Command

• About Communicating with the User

• About Using Bind Variables

• Using REFCURSOR Bind Variables

• Fetching Iterative Results from a SELECT inside a PL/SQL Block

6.1 Defining Substitution Variables
You can define variables, called substitution variables, for repeated use in a single
script by using the SQL*Plus DEFINE command. Note that you can also define
substitution variables to use in titles and to save your keystrokes (by defining a long
string as the value for a variable with a short name).

DEFINE L_NAME = "SMITH" (CHAR)

To list all substitution variable definitions, enter DEFINE by itself. Note that any
substitution variable you define explicitly through DEFINE takes only CHAR values
(that is, the value you assign to the variable is always treated as a CHAR datatype).
You can define a substitution variable of datatype NUMBER implicitly through the
ACCEPT command. You will learn more about the ACCEPT command.

To delete a substitution variable, use the SQL*Plus command UNDEFINE followed by
the variable name.

Example 6-1 Defining a Substitution Variable

To define a substitution variable L_NAME and give it the value "SMITH", enter the
following command:

DEFINE L_NAME = SMITH

To confirm the variable definition, enter DEFINE followed by the variable name:

DEFINE L_NAME

6-1

6.2 About Using Predefined Variables
There are nine variables containing SQL*Plus information that are defined during
SQL*Plus installation. These variables can be redefined, referenced or removed the
same as any other variable. They are always available from session to session unless
you explicitly remove or redefine them.

See Also:

Predefined Variables for a list of the predefined variables and examples of
their use.

6.3 Referencing Substitution Variables
Suppose you want to write a query like the one in SALES to list the employees with
various jobs, not just those whose job is SA_MAN. You could do that by editing a
different value into the WHERE clause each time you run the command, but there is
an easier way.

By using a substitution variable in place of the text, SA_MAN, in the WHERE clause,
you can get the same results you would get if you had written the values into the
command itself.

A substitution variable is preceded by one or two ampersands (&). When SQL*Plus
encounters a substitution variable in a command, SQL*Plus executes the command as
though it contained the value of the substitution variable, rather than the variable itself.

For example, if the variable SORTCOL has the value JOB_ID and the variable
MYTABLE has the value EMP_DETAILS_VIEW, SQL*Plus executes the commands

SELECT &SORTCOL, SALARY
FROM &MYTABLE
WHERE SALARY>12000;

as if they were

SELECT JOB_ID, SALARY
FROM EMP_DETAILS_VIEW
WHERE SALARY>12000;

6.3.1 Where and How to Use Substitution Variables
You can use substitution variables anywhere in SQL and SQL*Plus commands, except
as the first word entered. When SQL*Plus encounters an undefined substitution
variable in a command, SQL*Plus prompts you for the value.

You can enter any string at the prompt, even one containing blanks and punctuation. If
the SQL command containing the reference should have quote marks around the
variable and you do not include them there, the user must include the quotes when
prompted.

SQL*Plus reads your response from the keyboard or standard input.

Chapter 6
About Using Predefined Variables

6-2

After you enter a value at the prompt, SQL*Plus lists the line containing the
substitution variable twice: once before substituting the value you enter and once after
substitution. You can suppress this listing by setting the SET command variable
VERIFY to OFF.

Created file STATS

Now run the script STATS:

@STATS

And respond to the prompts for values as shown:

Enter value for group_col: JOB_ID
old 1: SELECT &GROUP_COL,
new 1: SELECT JOB_ID,
Enter value for number_col: SALARY
old 2: MAX(&NUMBER_COL) MAXIMUM
new 2: MAX(SALARY) MAXIMUM
Enter value for table: EMP_DETAILS_VIEW
old 3: FROM &TABLE
new 3: FROM EMP_DETAILS_VIEW
Enter value for group_col: JOB_ID
old 4: GROUP BY &GROUP_COL
new 4: GROUP BY JOB_ID

SQL*Plus displays the following output:

JOB_ID MAXIMUM
---------- ----------
AC_ACCOUNT 8300
AC_MGR 12000
AD_ASST 4400
AD_PRES 24000
AD_VP 17000
FI_ACCOUNT 9000
FI_MGR 12000
HR_REP 6500
IT_PROG 9000
MK_MAN 13000
MK_REP 6000

JOB_ID MAXIMUM
---------- ----------
PR_REP 10000
PU_CLERK 3100
PU_MAN 11000
SA_MAN 14000
SA_REP 11500
SH_CLERK 4200
ST_CLERK 3600
ST_MAN 8200

19 rows selected.

Chapter 6
Referencing Substitution Variables

6-3

A more practical use of substitution variables is to prompt for a value before
referencing the variable:

SQL> accept myv char prompt 'Enter a last name: '
SQL> select employee_id from employees where last_name = '&myv';

If these two commands are stored in a SQL*Plus script, a different last name can be
entered each time the script is run.

If you wish to append characters immediately after a substitution variable, use a period
to separate the variable from the character. For example:

SELECT SALARY FROM EMP_DETAILS_VIEW WHERE EMPLOYEE_ID='&X.5';
Enter value for X: 20

is interpreted as

SELECT SALARY FROM EMP_DETAILS_VIEW WHERE EMPLOYEE_ID='205';

If you want to append a period immediately after a substitution variable name, then
use two periods together. For example, if "myfile" is defined as "reports" then the
command:

SQL> spool &myfile..log

is the same as:

SQL> spool reports.log

Text in ANSI "/* */" or "--" comments that looks like a substitution variable may be
treated as one. For example:

SQL> select department_id, location_id /* get dept & loc */ from
departments;
Enter value for loc: _

Here the text "& loc" in the comment is interpreted as a variable reference. SQL*Plus
prompts you for a value for the variable "loc".

Example 6-2 Using Substitution Variables

Create a script named STATS, to be used to calculate a subgroup statistic (the
maximum value) on a numeric column:

SELECT &GROUP_COL, MAX(&NUMBER_COL) MAXIMUM
FROM &TABLE
GROUP BY &GROUP_COL
.
SAVE STATS

6.3.2 Difference Between "&" and "&&" Prefixes

Both single ampersand (&) and double ampersand (&&) can prefix a substitution
variable name in a statement. SQL*Plus pre-processes the statement and substitutes

Chapter 6
Referencing Substitution Variables

6-4

the variable's value. The statement is then executed. If the variable was not previously
defined then SQL*Plus prompts you for a value before doing the substitution.

If a single ampersand prefix is used with an undefined variable, the value you enter at
the prompt is not stored. Immediately after the value is substituted in the statement the
variable is discarded and remains undefined. If the variable is referenced twice, even
in the same statement, then you are prompted twice. Different values can be entered
at each prompt:

SQL> prompt Querying table &mytable
Enter value for mytable: employees
Querying table employees
SQL> select employee_id from &mytable where last_name = 'Jones';
Enter value for mytable: employees

EMPLOYEE_ID

 195

If a double ampersand reference causes SQL*Plus to prompt you for a value, then
SQL*Plus defines the variable as that value (that is, the value is stored until you exit).
Any subsequent reference to the variable (even in the same command) using either
"&" or "&&" substitutes the newly defined value. SQL*Plus will not prompt you again:

SQL> prompt Querying table &&mytable
Enter value for mytable: employees
Querying table employees
SQL> select employee_id from &mytable where last_name = 'Jones';

EMPLOYEE_ID

 195

6.3.3 Storing a Query Column Value in a Substitution Variable

Data stored in the database can be put into substitution variables:

SQL> column last_name new_value mynv
SQL> select last_name from employees where employee_id = 100;

The NEW_VALUE option in the COLUMN command implicitly creates a substitution variable
called mynv. The variable is not physically created until a query references the column
LAST_NAME. When the query finishes, the variable mynv holds the last retrieved value
from the column LAST_NAME:

SQL> define mynv
DEFINE mynv = "King" (CHAR)

Chapter 6
Referencing Substitution Variables

6-5

6.3.4 Restrictions
You cannot use substitution variables in the buffer editing commands, APPEND,
CHANGE, DEL, and INPUT, nor in other commands where substitution would be
meaningless. The buffer editing commands, APPEND, CHANGE, and INPUT, treat
text beginning with "&" or "&&" literally, like any other text string.

6.3.5 How Substitution Variables are Handled in SQL*Plus

Substitution variable references are pre-processed and substituted before the
command is parsed and executed. For each statement, SQL*Plus will do the following:

1. Loop for each "&" and "&&" variable reference:
 If the variable already has a value defined (i.e. stored)
 Replace the variable reference with the value
 else
 Prompt for a value
 Replace the variable reference with the value
 If the variable is prefixed with "&&" then
 define (i.e. store) the variable for future use

2. Execute the statement

Step 1 happens inside the SQL*Plus client tool. SQL*Plus then sends the final
statement to the database engine where step 2 occurs.

It is not possible to repeatedly prompt in a PL/SQL loop. This example prompts once
and the entered value is substituted in the script text. The resulting script is then sent
to the database engine for execution. The same entered value is stored five times in
the table:

begin
 for i in 1 .. 5 loop
 insert into mytable values (&myv);
 end loop;
end;
/

Substitution variables are not recursively expanded. If the value of a referenced
variable contains an ampersand, then the ampersand is used literally and is not
treated as a second variable prefix:

SQL> set escape \
SQL> define myv = \&mytext
SQL> prompt &myv
&mytext

Chapter 6
Referencing Substitution Variables

6-6

You cannot use a substitution variable as the first token of a command. Each
command name must be hard-coded text else an error is displayed. For example:

SQL> &myv * from dual;
SP2-0734: unknown command beginning "&myv * fro..." - rest of line ignored.

6.3.6 Substitution Variable Commands

Substitution variables can be used to replace options and values in almost all
SQL*Plus commands. Several of the commands have special significance for
substitution variables.

Command Description

ACCEPT Reads a line of input and stores it in a given
substitution variable.

COLUMN Specifies display attributes for a given column.

DEFINE Specifies a user or predefined variable and
assigns a CHAR value to it, or lists the value
and variable type of a single variable or all
variables.

EDIT Invokes an operating system text editor on the
contents of the specified file or on the contents
of the buffer.

EXIT Commits or rolls back all pending changes,
logs out of Oracle Database, terminates
SQL*Plus and returns control to the operating
system.

HOST Executes an operating system command
without leaving SQL*Plus.

TTITLE, BTITLE, REPHEADER, REPFOOTER TTITLE places and formats a specified title at
the top of each report page.

BTITLE places and formats a specified title at
the bottom of each report page.

REPHEADER places and formats a specified
report header at the top of each report.

REPFOOTER places and formats a specified
report footer at the bottom of each report.

UNDEFINE Deletes one or more substitution variables that
you defined either explicitly (with the DEFINE
command) or implicitly (with an argument to
the START command).

WHENEVER WHENEVER OSERROR performs the specified
action (exits SQL*Plus by default) if an
operating system error occurs (such as a file
writing error).

WHENEVER SQLERROR performs the specified
action (exits SQL*Plus by default) if a SQL
command or PL/SQL block generates an error.

Chapter 6
Referencing Substitution Variables

6-7

See SQL*Plus Command Summary for more information about these substitution
variable commands.

6.3.6.1 Using "&" Prefixes With Title Variables

The title commands (TTITLE, BTITLE, REPHEADER and REPFOOTER) substitute
variables differently to most other commands. (The exceptions are the EXIT and SET
SQLPROMPT commands, which are similar to the title commands).

The guidelines for variables in titles are:

• If you want the same value for a variable to be printed on every page then use an
"&" prefix and put the variable inside a quoted string:

accept mycustomer char prompt 'Enter your company name: '
ttitle left 'Report generated for company &mycustomer'
select last_name, job_id from employees order by job_id;

• If you want each title to have data from the query that is unique to each report
page then do not use an "&" prefix for the variable and do not put the variable
inside quotes.

column job_id new_value ji_nv noprint
break on job_id skip page
ttitle left 'Employees in job: ' ji_nv
select last_name, job_id from employees order by job_id;

SQL*Plus substitution variables are expanded before each command is executed.
After this happens in a title command, the resulting string is stored as the title text.
What makes variables in titles special is that they need to be re-substituted for each
page of query results. This is so the current COLUMN NEW_VALUE and OLD_VALUE
substitution variable values are displayed on each page, customizing each title for the
results displayed on its page. If "&" is used inadvertently or incorrectly to prefix title
variables, it is possible to get double substitution. This is dependent on the variable's
value and is easily overlooked when you write scripts.

Any non-quoted, non-keyword in a title is checked when the page is printed to see if it
is a variable. If it is, its value is printed. If not, then the word is printed verbatim. This
means that if you use "&myvar" in a title command, and the text substituted for it can
itself be interpreted as another variable name then you get double variable
substitution. For example, the script:

define myvar = scottsvar
ttitle left &myvar
define scottsvar = Hello
select * from dual;

causes the text "left scottsvar" to be stored as the title. When the title is printed on
each page of the query this string is re-evaluated. The word "scottsvar" in the title is
itself treated as a variable reference and substituted. The query output is:

Hello
D

Chapter 6
Referencing Substitution Variables

6-8

-
deX

Using "&" in titles most commonly causes a problem with the numeric variable names
of the SQL*Plus script parameters. If the value of an arbitrary "&"-prefixed title variable
is the same as a script parameter variable name, then double substitution will occur.

To display an "&" in a title, prefix it with the SET ESCAPE character. The ampersand
(&) is stored as the title text and is not substituted when page titles are printed.

6.3.6.2 Variables and Text Spacing in Titles

Unquoted whitespace in titles is removed. Use whitespace instead of the SET
CONCAT character to separate variables from text that should appear immediately
adjacent. Use whitespace inside quotes to display a space. For example, the script:

define myvar = 'ABC'
ttitle left myvar myvar Text ' Other words'
select ...;

gives a title of:

ABCABCText Other words

6.3.7 Substitution Variable Namespace, Types, Formats and Limits

Substitution Variable Namespace

In a SQL*Plus session there is just one global name space for substitution variables. If
you reconnect using CONNECT, or run subscripts using "@", all variables ever
defined are available for use and may be overridden or undefined.

When a child script finishes, all substitution variables it defined or changed are visible
to the calling script. This is particularly noticeable when a subscript executed with "@"
or START is given script parameters. The parameters "&1" etc. get redefined and the
parent script sees the new values.

To minimize problems, and for general readability, use symbolic variable names for
command parameters. All other references should use the new variable name instead
of "&1". For example:

define myuser = '&1'
@myscript.sql King
select first_name from employees where last_name = '&myuser';

The call to myscript.sql changes the value of "&1" to "King". By saving the original
value of "&1" in "myuser" and using "&myuser" instead of "&1" in the SELECT, the
query executes correctly.

Substitution Variable Types

The substitution variable types stored by SQL*Plus are:

Chapter 6
Referencing Substitution Variables

6-9

• CHAR

• NUMBER

• BINARY_FLOAT

• BINARY_DOUBLE

The CHAR type is a generic text format similar to the database table VARCHAR2
column type. All variables created from the following are of type CHAR:

• with DEFINE

• from prompts for "&" variables

• from script parameters

This ensures that values entered are substituted verbatim with no conversion loss.

Variables created by COLUMN NEW_VALUE or OLD_VALUE for the columns in
Oracle number format will have the type NUMBER. These substitution variables are
stored in Oracle's internal number representation as they are in the database. This
allows display formats to be altered without any internal value loss. Substitution
variables of BINARY_FLOAT and BINARY_DOUBLE types are similarly created for
Oracle BINARY_FLOAT and BINARY_DOUBLE columns. These variables are stored
in native machine representation. The CHAR type is used for NEW_VALUE and
OLD_VALUE variables with all other column types.

There is no explicit DATE type. The DATE keyword in the ACCEPT command is used
solely to allow correct format validation against a date format. Substitution variables
created by ACCEPT ... DATE, or by COLUMN NEW_VALUE on a date column, are
stored as type CHAR. For example:

SQL> accept mydvar date format 'DD-MON-YYYY'
prompt 'Enter a date: '
Enter a date: 03-APR-2003
SQL> define mydvar
DEFINE MYDVAR = "03-APR-2003" (CHAR)

If a variable already exists and is redefined, its old type is discarded and the new type
used.

The type of a substitution variable is generally transparent. Substitution variables are
weakly typed. For example, a COLUMN NEW_VALUE variable takes on the particular
type of the named column in each new query. It may also change type during a query.
For example, the type of a substitution variable used on a NUMBER column changes
from NUMBER to CHAR when a NULL value is fetched. It changes back to NUMBER
when the next numeric value is fetched.

No type comparison semantics are defined for any type since there is no direct
comparison of variables. All variables are textually substituted before any SQL or
PL/SQL statement that could do a comparison is executed.

Substitution Variable Formats

When a variable is substituted, or its value is shown by a DEFINE command, it is
formatted as text before the command referencing the variable is finally executed.

CHAR variables are substituted verbatim.

Chapter 6
Referencing Substitution Variables

6-10

NUMBER variables are formatted according to SET NUMWIDTH (by default) or SET
NUMFORMAT (if you have explicitly set one):

The display format of a number can be changed even after the variable is created. To
show this, first create a NUMBER variable. You cannot use DEFINE to do this
because it makes the type of all new variables CHAR. Instead use a COLUMN
NEW_VALUE command which inherits the NUMBER type from a NUMBER column:

SQL> column c2 new_val m
SQL> select 1.1 c2 from dual C2;

1.1
SQL> define m
DEFINE M = 1.1 (NUMBER)

Changing the format affects the display of the number but not the stored value:

SQL> set numformat 99.990
SQL> define m
DEFINE M = 1.100 (NUMBER)

Substitution Variable Limits

The maximum number of substitution variables allowed is 2048. SQL*Plus gives an
error an attempt is made to create more. The limit includes the predefined variables,
however these can be undefined if necessary. Leaving a large number of
unnecessarily defined variables can reduce the performance of SQL*Plus because
variable lookups are slower.

A character substitution variable can be up to 240 bytes long.

A numeric substitution variable holds the full range of Oracle numbers.

When a command line undergoes variable substitution, the resulting line length can be
no more than:

• 3000 bytes if it is a line of SQL (like SELECT or INSERT) or PL/SQL text (like
BEGIN or CREATE PROCEDURE)

• 2499 bytes if it a line of a SQL*Plus command (like TTITLE or COLUMN)

Otherwise an error is displayed.

These limits may be lower in old versions of SQL*Plus.

6.3.8 Assigning Substitution Variables to Bind Variables

You can assign a substitution variable to a bind variable:

SQL> define mysubv = 123
SQL> variable mybndv number
SQL> execute :mybndv := &mysubv;

SQL*Plus executes the PL/SQL assignment statement after it substitutes the value of
"mysubv". If "mysubv" was not already defined, you would be prompted for a value.

Chapter 6
Referencing Substitution Variables

6-11

The bind variable can be used in subsequent SQL or PL/SQL commands.

6.3.9 Assigning Bind Variables to Substitution Variables

Sometimes it is useful to make the value of a bind variable available to SQL*Plus
commands like TTITLE or SPOOL. For example, you might want to call a PL/SQL
function that returns a string and use the value for a SQL*Plus spool file name. The
SPOOL command does not understand bind variable syntax so the bind variable value
needs to be assigned to a substitution variable first.

This is done using COLUMN NEW_VALUE and SELECT commands. For example,
declare a bind variable in SQL*Plus and instantiate it in a PL/SQL block. Its value can
be returned from a PL/SQL function, or like here, set by a direct assignment:

SQL> variable mybv varchar2(14)
SQL> begin
 2 /* ... */
 3 :mybv := 'report.log';
 4 end;
 5 /

Pass the bind variable's value to a new substitution variable "nv" by using a query:

SQL> column mybvcol new_value nv noprint
SQL> select :mybv mybvcol from dual;

Now you can use the substitution variable in a SPOOL command:

SQL> spool &nv

The SPOOL command executes as if you had typed

SQL> spool report.log

6.3.10 Substitution Variable Examples
The following examples demonstrate how to use substitution variables.

• Setting a Substitution Variable's Value

• Using a Substitution Variable

• Finding All Defined Substitution Variables

• Inserting Data Containing "&" Without Being Prompted

• Putting the Current Date in a Spool File Name

• Appending Alphanumeric Characters Immediately After a Substitution Variable

• Putting a Period After a Substitution Variable

• Using a Fixed Value Variable in a TTITLE, BTITLE, REPHEADER or
REPFOOTER

Chapter 6
Referencing Substitution Variables

6-12

• Using a Changing Value Variable in a TTITLE, BTITLE, REPHEADER or
REPFOOTER

• Using the Value of a Bind Variable in a SQL*Plus Command Like SPOOL

• Passing Parameters to SQL*Plus Substitution Variables

• Passing Operating System Variables to SQL*Plus

• Passing a Value to a PL/SQL Procedure From the Command Line

• Allowing Script Parameters to be Optional and Have a Default Value

• Using a Variable for the SQL*Plus Return Status

• Putting the Username and Database in the Prompt

6.3.10.1 Setting a Substitution Variable's Value
A substitution variable can be set in several ways. The common ways are as follows:

• The DEFINE command sets an explicit value:

define myv = 'King'

• The ACCEPT command:

accept myv char prompt 'Enter a last name: '

prompts you for a value and creates a character variable "myv" set to the text you
enter.

• Using "&&" before an undefined variable prompts you for a value and uses that
value in the statement:

select first_name from employees where last_name = '&&myuser';

If the substitution variable "myuser" is not already defined, then this statement
creates "myuser" and sets it to the value you enter.

• Using COLUMN NEW_VALUE to set a substitution variable to a value stored in
the database:

column last_name new_value mynv select last_name from employees
where employee_id = 100;

This creates a substitution variable "mynv" set to the value in the "last_name"
column.

6.3.10.2 Using a Substitution Variable
Once a substitution variable has a value, it can be referenced by prefixing the variable
name with an ampersand (&).

If the variable "myv" is already defined, it can be used as:

select employee_id from employees where last_name = '&myv';

Chapter 6
Referencing Substitution Variables

6-13

6.3.10.3 Finding All Defined Substitution Variables

The DEFINE command with no parameters shows all defined substitution variables,
their values, and their types. For example:

define

might give:

DEFINE MYV = "King" (CHAR)
...

6.3.10.4 Inserting Data Containing "&" Without Being Prompted
There are two ways to make an "&" be treated as text and not cause a prompt. The
first turns all variable substitution off:

set define off
create table mytable (c1 varchar2(20));
insert into mytable (c1) values ('thick & thin');

The INSERT statement stores the text "thick & thin" in the table.

The second method is useful for ignoring individual occurrences of "&" while allowing
others to prefix substitution variables:

set escape \
create table mytable (c1 varchar2(20));
insert into mytable (c1) values ('thick \& thin');
insert into mytable (c1) values ('&mysubvar');

The first INSERT statement in this method stores the text "thick & thin" in the table.
The second INSERT causes SQL*Plus to prompt you for a value, which is then stored.

6.3.10.5 Putting the Current Date in a Spool File Name

Using SYSDATE you can query the current date and put it in a substitution variable.
The substitution variable can then be used in a SPOOL command:

column dcol new_value mydate noprint
select to_char(sysdate,'YYYYMMDD') dcol from dual;
spool &mydate.report.txt

-- my report goes here
select last_name from employees;

spool off

Chapter 6
Referencing Substitution Variables

6-14

In this example, the first query puts the date in the substitution variable "mydate".
There is no visible output from this query because of the NOPRINT option in the
COLUMN command. In the SPOOL command, the first period (.) indicates the end of
the variable name and is not included in the resulting string. If "mydate" contained
"20030120" from the first query, then the spool file name would be
"20030120report.txt".

You can use this technique to build up any string for the file name.

The period is the default value of SET CONCAT. If you have assigned another
character, use it instead of a period to end the substitution variable name.

6.3.10.6 Appending Alphanumeric Characters Immediately After a Substitution
Variable

If you wish to append alphanumeric characters immediately after a substitution
variable, use the value of SET CONCAT to separate the variable name from the
following text. The default value of SET CONCAT is a single period (.). For example:

define mycity = Melbourne
spool &mycity.Australia.txt

creates a file with the name "MelbourneAustralia.txt".

6.3.10.7 Putting a Period After a Substitution Variable

If SET CONCAT is a period (.) and you want to append a period immediately after a
substitution variable, use two periods together. For example:

define mycity = Melbourne
spool &mycity..log

is the same as:

spool Melbourne.log

6.3.10.8 Using a Fixed Value Variable in a TTITLE, BTITLE, REPHEADER or
REPFOOTER

This example makes every page of a report have exactly the same heading. It can be
used for TTITLE, BTITLE, REPHEADER or REPFOOTER commands. In a TTITLE
command, prefix the variable name "dept" with "&" and place it inside a quoted string:

define dept = '60'
ttitle left 'Salaries for department &dept'
select last_name, salary from employees where department_id = &dept;

Chapter 6
Referencing Substitution Variables

6-15

6.3.10.9 Using a Changing Value Variable in a TTITLE, BTITLE, REPHEADER
or REPFOOTER

This example uses a different title on every page of a report. Each title contains a
value derived from query results shown on that particular page. In a TTITLE
command, do not put an "&" before the variable name "dv". Put the variable name
outside a quoted string:

column department_id new_value dv noprint
ttitle left 'Members of department ' dv
break on department_id skip page
select department_id, last_name from employees order by department_id,
last_name;

In a BTITLE or REPFOOTER command, use a COLUMN OLD_VALUE variable
instead of a COLUMN NEW_VALUE variable.

6.3.10.10 Using the Value of a Bind Variable in a SQL*Plus Command Like
SPOOL

If you want to use the value of a bind variable in a SQL*Plus command, it must first be
copied to a substitution variable.

SQL*Plus commands such as SPOOL, SET and TTITLE are executed in the
SQL*Plus program and are not passed to the database for execution. Because of this,
these commands do not understand bind variables.

To use a bind variable's value as the name of a spool file:

-- Set a bind variable to a text string
variable mybindvar varchar2(20)
begin
 :mybindvar := 'myspoolfilename';
end;

-- Transfer the value from the bind variable to the substitution variable
column mc new_value mysubvar noprint
select :mybindvar mc from dual;

-- Use the substitution variable
spool &mysubvar..txt
select * from employees;

spool off

Chapter 6
Referencing Substitution Variables

6-16

6.3.10.11 Passing Parameters to SQL*Plus Substitution Variables

You can pass parameters on the command line to a SQL*Plus script:

sqlplus hr/my_password @myscript.html employees "De Haan"

They can be referenced in the script using "&1" and "&2". For example, myscript.sql
could be:

set verify off
select employee_id from &1 where last_name = '&2';

Here the "SET VERIFY OFF" command stops SQL*Plus from echoing the SQL
statement before and after the variables are substituted. The query returns the
employee identifier for the employee "De Haan" from the "employees" table.

Parameters can also be passed to scripts called within SQL*Plus:

SQL> @myscript.sql employees "De Haan"

6.3.10.12 Passing Operating System Variables to SQL*Plus

You can pass an operating system variable to a SQL*Plus script as a command line
parameter. For example, on UNIX:

sqlplus hr/my_password @myscript.sql $USER

or in a Windows command window:

sqlplus hr/my_password @myscript.sql %USERNAME%

The script myscript.sql could reference the substitution variable "&1" to see the passed
name.

6.3.10.13 Passing a Value to a PL/SQL Procedure From the Command Line

If you create a procedure "myproc":

create or replace procedure myproc (p1 in number) as
begin
 dbms_output.put_line('The number is '||p1);
end;
/

Chapter 6
Referencing Substitution Variables

6-17

and myscript.sql contains:

begin
 myproc(&1);
end;
/

then calling:

sqlplus hr/my_password @myscript.sql 88

executes the script as if it is:

begin
 myproc(88);
end;
/

This method does not work if the parameter "p1" to "myproc" is "IN OUT". The variable
reference is pre-processed and is effectively a hardcoded value which cannot contain
an OUT value. To get around this, you can assign the substitution variable to a bind
variable. The script myscript.sql becomes:

variable mybindvar number
begin
 :mybindvar := &1;
 myproc(:mybindvar);
end;
/

6.3.10.14 Allowing Script Parameters to be Optional and Have a Default Value

The goal is to create a script that accepts an optional parameter. If a parameter is
passed from the command line, then its value should be used. However, if there is no
parameter, then SQL*Plus should ask for a value with a customized prompt. Perhaps
the closest solution is with a PROMPT/DEFINE sequence. If myscript.sql is:

-- Name: myscript.sql
prompt Enter a value for PAGESIZE
set termout off
define mypar = &1
set termout on
prompt Setting PAGESIZE to &mypar
set pagesize &mypar
select last_name from employees where rownum < 20;
exit

Chapter 6
Referencing Substitution Variables

6-18

you can call the script with or without a parameter. If you enter "12" at the prompt your
screen looks like:

$ sqlplus hr/my_password @myscript.sql
SQL*Plus: Release 9.2.0.3.0 - Production on Wed Mar 5 15:19:40 2003
. . .
Enter a value for PAGESIZE 12
Setting PAGESIZE to 12

LAST_NAME

King
Kochhar
De Haan
. . .

or if you call it with a parameter "8":

$ sqlplus hr/my_password @myscript.sql 8
SQL*Plus: Release 9.2.0.3.0 - Production on Wed Mar 5 15:20:38 2003
. . .
Enter a value for PAGESIZE
Setting PAGESIZE to 8

LAST_NAME

King
Kochhar
De Haan
. . .

Note when you pass a parameter, the PROMPT text is still displayed, but you do not
enter a value. The PROMPT command is the SQL*Plus "echo" or "print" statement. (It
does not read input). The only occurrence of "&1" should be where "mypar" is defined.
All other references to the parameter should use "&mypar" or "&&mypar".

6.3.10.15 Using a Variable for the SQL*Plus Return Status

To use the value of a substitution variable called "myv" as the SQL*Plus return status,
use:

EXIT myv

No ampersand (&) prefix is required before the substitution variable name.

A numeric bind variable requires a colon (:) prefix:

EXIT :mybv

Chapter 6
Referencing Substitution Variables

6-19

6.3.10.16 Putting the Username and Database in the Prompt

In SQL*Plus 10g, add the following to your glogin.sql or login.sql:

set sqlprompt "_user'@'_connect_identifier:SQL> "

For customized prompts that query the database, ensure that you explicitly DEFINE
any referenced substitution variables. Glogin.sql and login.sql can get run when there
is no database connection. Defining variables prevents the user being prompted for
values when the query fails and the variables do not get defined by it:

set termout off
define myv = 'Not connected'
column myc new_value myv
select user||'@'||global_name myc from global_name;
set sqlprompt '&myv:SQL> '
set termout on

SQL*Plus 9.2 and earlier do not re-execute glogin.sql and login.sql after CONNECT
commands. Also, variables in the SQLPROMPT are not dynamically substituted. It is
possible to use the query script given above, but note that the prompt will only be valid
for the original connection.

6.4 System Variables Influencing Substitution Variables
The following system variables, specified with the SQL*Plus SET command, affect
substitution variables:

System Variable Affect on Substitution Variables

SET CONCAT
Defines the character that separates the name of a substitution
variable or parameter from characters that immediately follow the
variable or parameter—by default the period (.).

SET DEFINE
Defines the substitution character (by default the ampersand "&")
and turns substitution on and off.

SET ESCAPE
Defines an escape character you can use before the substitution
character. The escape character instructs SQL*Plus to treat the
substitution character as an ordinary character rather than as a
request for variable substitution. The default escape character is a
backslash (\).

SET NUMFORMAT
Sets the default format for displaying numbers, including numeric
substitution variables.

SET NUMWIDTH
Sets the default width for displaying numbers, including numeric
substitution variables.

SET SQLPROMPT
Sets the SQL*Plus command prompt.

SET VERIFY ON
Lists each line of the script before and after substitution.

Chapter 6
System Variables Influencing Substitution Variables

6-20

See SET for more information about system variables.

6.4.1 System Variables in Titles and EXIT

There is a special syntax to reference system variables in TTITLE, BTITLE,
REPHEADER, REPFOOTER, and EXIT commands. The name of each special
variable is the same as the SHOW option prefixed with "SQL.".

The special variables that can be referenced include:

• SQL.PNO - page number

• SQL.LNO - line number

• SQL.USER - current username

• SQL.RELEASE - SQL*Plus version

• SQL.SQLCODE - last Oracle "ORA" error number

For example:

SQL> ttitle left 'Salary Report. Page: ' sql.pno
SQL> select salary from employees;
SQL> exit sql.sqlcode

System variables of numeric type, such as SQL.SQLCODE, are formatted using the
same rules as numeric substitution variables.

The variables cannot be prefixed with an "&".

These variables are not substitution variables. The DEFINE command does not show
them. They cannot be referenced in general commands. The system variables are not
affected if you create substitution variables with the same name. For example,
SQL.USER is not affected if you create a substitution variable called USER. The
system variable SQL.RELEASE is not affected if the predefined substitution variable
_O_RELEASE is changed.

6.5 Passing Parameters through the START Command
You can bypass the prompts for values associated with substitution variables by
passing values to parameters in a script through the START command.

You do this by placing an ampersand (&) followed by a numeral in the script in place of
a substitution variable. Each time you run this script, START replaces each &1 in the
file with the first value (called an argument) after START filename, then replaces each
&2 with the second value, and so forth.

For example, you could include the following commands in a script called MYFILE:

SELECT * FROM EMP_DETAILS_VIEW
WHERE JOB_ID='&1'
AND SALARY='&2';

In the following START command, SQL*Plus would substitute PU_CLERK for &1 and
3100 for &2 in the script MYFILE:

START MYFILE PU_CLERK 3100

Chapter 6
Passing Parameters through the START Command

6-21

When you use arguments with the START command, SQL*Plus DEFINEs each
parameter in the script with the value of the appropriate argument.

1 COLUMN LAST_NAME HEADING 'LAST NAME'
2 COLUMN SALARY HEADING 'MONTHLY SALARY' FORMAT $99,999
3 COLUMN COMMISSION_PCT HEADING 'COMMISSION %' FORMAT 90.90
4 SELECT LAST_NAME, SALARY, COMMISSION_PCT
5 FROM EMP_DETAILS_VIEW
6* WHERE JOB_ID='SA_MAN'

6

6* WHERE JOB_ID='SA_MAN'

CHANGE /SA_MAN/&1

6* WHERE JOB_ID='&1'

SAVE ONEJOB

Created file ONEJOB

Now run the command with the parameter SA_MAN:

START ONEJOB SA_MAN

SQL*Plus lists the line of the SQL command that contains the parameter, before and
after replacing the parameter with its value, and then displays the output:

old 3: WHERE JOB_ID='&1'
new 3: WHERE JOB_ID='SA_MAN'

LAST NAME MONTHLY SALARY COMMISSION %
------------------------- -------------- ------------
Russell $14,000 0.40
Partners $13,500 0.30
Errazuriz $12,000 0.30
Cambrault $11,000 0.30
Zlotkey $10,500 0.20

You can use many parameters in a script. Within a script, you can refer to each
parameter many times, and you can include the parameters in any order.

While you cannot use parameters when you run a command with RUN or slash (/), you
could use substitution variables instead.

Before continuing, return the columns to their original heading by entering the following
command:

CLEAR COLUMN

Chapter 6
Passing Parameters through the START Command

6-22

Example 6-3 Passing Parameters through START

To create a new script based on SALES that takes a parameter specifying the job to
be displayed, enter

GET SALES

6.5.1 Script Parameters

Parameters can be passed to SQL*Plus scripts. For example, from the command line:

sqlplus hr/my_password @myscript.sql King

You can also pass parameters when calling a SQL*Plus script from within a SQL*Plus
session, for example:

SQL> @myscript.sql King

Script parameters become defined substitution variables. The variable name for the
first parameter is "1", the second is "2", etc. The effect is the same as starting
SQL*Plus and typing:

SQL> define 1 = King
SQL> @myscript.sql

Commands in myscript.sql can reference "&1" to get the value "King". A DEFINE
command shows the parameter variable:

SQL> define 1
DEFINE 1 = "King" (CHAR)

Script parameter variables have type CHAR, similar to variables explicitly created with
DEFINE.

Quoting parameters with single or double quotes is allowed. This lets whitespace be
used within parameters. Operating systems and scripting languages that call
SQL*Plus handle quotes in different ways. They may or may not pass quotes to the
SQL*Plus executable. For example, in a standard Bourne shell on UNIX, quotes
around parameters are stripped before the parameters are passed to SQL*Plus, and
SQL*Plus never sees the quotes.

It is recommended to check how quoted parameters are handled on your operating
system with your patch level of SQL*Plus. For portability between UNIX and Windows
environments use double quotes around parameters containing whitespace.

SQL*Plus Releases 8.1.7, 9.2.0.3 (and other 9.x versions patched for bug 2471872)
and 10.1 onwards remove an outer set of single or double quotes from parameters
passed on the SQL*Plus command line. This makes SQL*Plus behave the same way
on operating systems that do not themselves strip quotes as it does when the
operating system strips the quotes before calling SQL*Plus.

Chapter 6
Passing Parameters through the START Command

6-23

As an example of passing parameters, when SQL*Plus 10.1 is called in the UNIX shell
script:

#! /bin/sh
sqlplus hr/<i>my_password</i> @myscript.sql "Jack and Jill"

only one program parameter is defined. References in myscript.sql to "&1" are
replaced with "Jack and Jill" (without quotes - because the shell script does not pass
quotes to SQL*Plus).

6.6 About Communicating with the User
Three SQL*Plus commands—PROMPT, ACCEPT, and PAUSE—help you
communicate with the end user. These commands enable you to send messages to
the screen and receive input from the user, including a simple Return. You can also
use PROMPT and ACCEPT to customize the prompts for values SQL*Plus
automatically generates for substitution variables.

6.6.1 Receiving a Substitution Variable Value
Through PROMPT and ACCEPT, you can send messages to the end user and receive
values from end-user input. PROMPT displays a message you specify on-screen to
give directions or information to the user. ACCEPT prompts the user for a value and
stores it in the substitution variable you specify. Use PROMPT in conjunction with
ACCEPT when a prompt spans more than one line.

Created file PROMPT1.sql

The TTITLE command sets the top title for your report. See About Defining Page and
Report Titles and Dimensions for more information about the TTITILE command.

Finally, run the script, responding to the prompt for the title as shown:

START PROMPT1

Enter a title of up to 30 characters
Title: Department Report
Department ReportEMPLOYEE_ID FIRST_NAME
LAST_NAME SALARY
----------- -------------------- ------------------------- ----------
 145 John Russell 14000
 146 Karen Partners 13500
 147 Alberto Errazuriz 12000
 148 Gerald Cambrault 11000
 149 Eleni Zlotkey 10500

Before continuing, turn the TTITLE command off:

TTITLE OFF

Chapter 6
About Communicating with the User

6-24

Example 6-4 Prompting for and Accepting Input

To direct the user to supply a report title and to store the input in the variable MYTITLE
for use in a subsequent query, first clear the buffer:

CLEAR BUFFER

Next, set up a script as shown and save this file as PROMPT1:

PROMPT Enter a title of up to 30 characters
ACCEPT MYTITLE PROMPT 'Title: '
TTITLE LEFT MYTITLE SKIP 2
SELECT EMPLOYEE_ID, FIRST_NAME, LAST_NAME, SALARY
FROM EMP_DETAILS_VIEW
WHERE JOB_ID='SA_MAN'

SAVE PROMPT1

6.6.2 Customizing Prompts for Substitution Variable
If you want to customize the prompt for a substitution variable value, use PROMPT
and ACCEPT in conjunction with the substitution variable, as shown in the following
example.

Enter a valid employee ID
For Example 145, 206

Employee ID. :

205

old 3: WHERE EMPLOYEE_ID=&ENUMBER
new 3: WHERE EMPLOYEE_ID= 205

Department Report

FIRST_NAME LAST_NAME SALARY
-------------------- ------------------------- ----------
Shelley Higgins 12000

What would happen if you typed characters instead of numbers? Since you specified
NUMBER after the variable name in the ACCEPT command, SQL*Plus will not accept
a non-numeric value:

Try entering characters instead of numbers to the prompt for "Employee ID.",
SQL*Plus will respond with an error message and prompt you again to re-enter the
correct number:

START PROMPT2

When SQL*Plus prompts you to enter an Employee ID, enter the word "one" instead of
a number:

Enter a valid employee ID
For Example 145, 206

Chapter 6
About Communicating with the User

6-25

Employee ID. :

one

SP2-0425: "one" is not a valid number

Example 6-5 Using PROMPT and ACCEPT in Conjunction with Substitution
Variables

As you have seen in Example 6-4, SQL*Plus automatically generates a prompt for a
value when you use a substitution variable. You can replace this prompt by including
PROMPT and ACCEPT in the script with the query that references the substitution
variable. First clear the buffer with:

CLEAR BUFFER

To create such a file, enter the following:

INPUT
PROMPT Enter a valid employee ID
PROMPT For Example 145, 206
ACCEPT ENUMBER NUMBER PROMPT 'Employee ID. :'
SELECT FIRST_NAME, LAST_NAME, SALARY
FROM EMP_DETAILS_VIEW
WHERE EMPLOYEE_ID=&ENUMBER;

Save this file as PROMPT2. Next, run this script. SQL*Plus prompts for the value of
ENUMBER using the text you specified with PROMPT and ACCEPT:

START PROMPT2

SQL*Plus prompts you to enter an Employee ID:

6.6.3 Sending a Message and Accepting Return as Input
If you want to display a message on the user's screen and then have the user press
Return after reading the message, use the SQL*Plus command PAUSE. For example,
you might include the following lines in a script:

PROMPT Before continuing, make sure you have your account card.
PAUSE Press RETURN to continue.

6.6.4 Clearing the Screen
If you want to clear the screen before displaying a report (or at any other time), include
the SQL*Plus CLEAR command with its SCREEN clause at the appropriate point in
your script, using the following format:

CLEAR SCREEN

Before continuing to the next section, reset all columns to their original formats and
headings by entering the following command:

CLEAR COLUMNS

Chapter 6
About Communicating with the User

6-26

6.7 About Using Bind Variables
Bind variables are variables you create in SQL*Plus and then reference in PL/SQL or
SQL. If you create a bind variable in SQL*Plus, you can use the variable as you would
a declared variable in your PL/SQL subprogram and then access the variable from
SQL*Plus. You can use a bind variable as an input bind variable to hold data which
can then be used in PL/SQL or SQL statements to insert data into the database. You
can assign a value to a newly defined variable. The value assigned in this variable can
then be used in a statement.

Because bind variables are recognized by SQL*Plus, you can display their values in
SQL*Plus or reference them in PL/SQL subprograms that you run in SQL*Plus.

6.7.1 Creating Bind Variables
You create bind variables in SQL*Plus with the VARIABLE command. For example

VARIABLE ret_val NUMBER

This command creates a bind variable named ret_val with a datatype of NUMBER.
See the VARIABLE command for more information. (To list all bind variables created
in a session, type VARIABLE without any arguments.)

6.7.2 Referencing Bind Variables
You reference bind variables in PL/SQL by typing a colon (:) followed immediately by
the name of the variable. For example

:ret_val := 1;

To change this bind variable in SQL*Plus, you must enter a PL/SQL block. For
example:

BEGIN
 :ret_val:=4;
END;
/

PL/SQL procedure successfully completed.

This command assigns a value to the bind variable named ret_val.

6.7.3 Displaying Bind Variables
To display the value of a bind variable in SQL*Plus, you use the SQL*Plus PRINT
command. For example:

PRINT RET_VAL

 RET_VAL

 4

Chapter 6
About Using Bind Variables

6-27

This command displays a bind variable named ret_val. See PRINT for more
information about displaying bind variables.

6.7.4 Executing an Input Bind

You can assign a value to a variable for input binding.

SQL> variable abc number=123
SQL> select :abc from dual;

 :ABC

 4

SQL>

SQL> create table mytab (col1 number, col2 varchar2(10));

Table created.

SQL> var abc number=123
SQL> var xyz varchar2(10)='test'
SQL> insert into mytab values(:abc,:xyz);

1 row created.

SQL> select * from mytab;

 COL1 COL2
---------- ----------
 123 test

SQL>

See the VARIABLE command for more information.

6.8 Using REFCURSOR Bind Variables
SQL*Plus REFCURSOR bind variables allow SQL*Plus to fetch and format the results
of a SELECT statement contained in a PL/SQL block.

REFCURSOR bind variables can also be used to reference PL/SQL cursor variables
in stored procedures. This enables you to store SELECT statements in the database
and reference them from SQL*Plus.

A REFCURSOR bind variable can also be returned from a stored function.

PL/SQL procedure successfully completed.

The results from the SELECT statement can now be displayed in SQL*Plus with the
PRINT command.

PRINT employee_info

EMPLOYEE_ID SALARY
----------- ----------

Chapter 6
Using REFCURSOR Bind Variables

6-28

 145 14000
 146 13500
 147 12000
 148 11000
 149 10500

The PRINT statement also closes the cursor. To reprint the results, the PL/SQL block
must be executed again before using PRINT.

Package created.

Next, create the stored procedure containing an OPEN... FOR SELECT statement.

CREATE OR REPLACE PACKAGE BODY EmpPack AS
 PROCEDURE EmpInfoRpt (emp_cv IN OUT EmpInfoTyp) AS
 BEGIN
 OPEN emp_cv FOR SELECT EMPLOYEE_ID, SALARY
 FROM EMP_DETAILS_VIEW
 WHERE JOB_ID='SA_MAN' ;
 END;
END;
 /

Procedure created.

Execute the procedure with a SQL*Plus bind variable as the parameter.

VARIABLE cv REFCURSOR
EXECUTE EmpPack.EmpInfoRpt(:cv)

PL/SQL procedure successfully completed.

Now print the bind variable.

PRINT cv

EMPLOYEE_ID SALARY
----------- ----------
 145 14000
 146 13500
 147 12000
 148 11000
 149 10500

The procedure can be executed multiple times using the same or a different
REFCURSOR bind variable.

VARIABLE pcv REFCURSOR
EXECUTE EmpInfo_rpt(:pcv)

PL/SQL procedure successfully completed.

Chapter 6
Using REFCURSOR Bind Variables

6-29

PRINT pcv

EMPLOYEE_ID SALARY
----------- ----------
 145 14000
 146 13500
 147 12000
 148 11000
 149 10500

Function created.

Execute the function.

VARIABLE rc REFCURSOR
EXECUTE :rc := EmpInfo_fn

PL/SQL procedure successfully completed.

Now print the bind variable.

PRINT rc

EMPLOYEE_ID SALARY
----------- ----------
 145 14000
 146 13500
 147 12000
 148 11000
 149 10500

The function can be executed multiple times using the same or a different
REFCURSOR bind variable.

EXECUTE :rc := EmpInfo_fn

PL/SQL procedure successfully completed.

Example 6-6 Creating, Referencing, and Displaying REFCURSOR Bind
Variables

To create, reference and display a REFCURSOR bind variable, first declare a local
bind variable of the REFCURSOR datatype

create procedure p4 as
 c1 sys_refcursor;
 c2 sys_refcursor;
begin
 open c1 for SELECT * FROM DEPT;
 dbms_sql.return_result(c1);
 open c2 for SELECT * FROM EMP;
 dbms_sql.return_result(c2);
end;
/

Chapter 6
Using REFCURSOR Bind Variables

6-30

Next, enter a PL/SQL block that uses the bind variable in an OPEN... FOR SELECT
statement. This statement opens a cursor variable and executes a query. See OPEN
Statementfor information on the OPEN command and cursor variables.

In this example we are binding the SQL*Plus employee_info bind variable to the cursor
variable.

BEGIN
OPEN :employee_info FOR SELECT EMPLOYEE_ID, SALARY
FROM EMP_DETAILS_VIEW WHERE JOB_ID='SA_MAN' ;
END;
 /

Example 6-7 Using REFCURSOR Variables in Stored Procedures

A REFCURSOR bind variable is passed as a parameter to a procedure. The
parameter has a REF CURSOR type. First, define the type.

CREATE OR REPLACE PACKAGE EmpPack AS
 TYPE EmpInfoTyp IS REF CURSOR;
 PROCEDURE EmpInfoRpt (emp_cv IN OUT EmpInfoTyp);
END EmpPack;
/

Example 6-8 Using REFCURSOR Variables in Stored Functions

Create a stored function containing an OPEN... FOR SELECT statement:

CREATE OR REPLACE FUNCTION EmpInfo_fn RETURN -
cv_types.EmpInfo IS
resultset cv_types.EmpInfoTyp;
BEGIN
OPEN resultset FOR SELECT EMPLOYEE_ID, SALARY
FROM EMP_DETAILS_VIEW
WHERE JOB_ID='SA_MAN';
RETURN(resultset);
END;
/

6.9 Fetching Iterative Results from a SELECT inside a
PL/SQL Block

SQL*Plus can iteratively fetch and format the results of a SELECT statement
contained in a PL/SQL block or stored procedure. You do not need to define local
REFCURSOR variables.

The results from the SELECT statements are displayed.

ResultSet #1

DEPTNO DNAME LOC
------ ---------- ---------
10 ACCOUNTING NEW YORK
20 RESEARCH DALLAS
30 SALES CHICAGO
40 OPERATIONS BOSTON

Chapter 6
Fetching Iterative Results from a SELECT inside a PL/SQL Block

6-31

4 rows selected

ResultSet #2

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
----- ------ --------- ---- --------- ---- ---- --
7369 SMITH CLERK 7902 17-DEC-80 800 20
7499 ALLEN SALESMAN 7698 20-FEB-81 1600 300 30
7521 WARD SALESMAN 7698 22-FEB-81 1250 500 30
7566 JONES MANAGER 7839 02-APR-81 2975 20
7654 MARTIN SALESMAN 7698 28-SEP-81 1250 1400 30
7698 BLAKE MANAGER 7839 01-MAY-81 2850 30
7782 CLARK MANAGER 7839 09-JUN-81 2450 10
7788 SCOTT ANALYST 7566 05-APR-11 3000 20
7839 KING PRESIDENT 17-NOV-81 5000 10
7844 TURNER SALESMAN 7698 08-SEP-81 1500 0 30
7876 ADAMS CLERK 7788 09-MAY-11 1100

14 rows selected

Example 6-9 Creating a PL/SQL Procedure

Create a PL/SQL procedure P4 which calls two statements.

create procedure p4 as
 c1 sys_refcursor;
 c2 sys_refcursor;
begin
 open c1 for SELECT * FROM DEBT;
 dbms_sql.return_result(c1);
 open c2 for SELECT * FROM EMP;
 dbms_sql.return_result(c2);
end;
/
Procedure created.

Next, run the procedure to retrieve results iteratively from the SELECT statements in
the procedure.

exec p4
PL/SQL procedure successfully completed.

Chapter 6
Fetching Iterative Results from a SELECT inside a PL/SQL Block

6-32

7
Formatting SQL*Plus Reports

This chapter explains how to format your query results to produce a finished report.
This chapter does not discuss HTML output, but covers the following topics:

• About Formatting Columns

• About Clarifying Your Report with Spacing and Summary Lines

• About Defining Page and Report Titles and Dimensions

• About Storing and Printing Query Results

Read this chapter while sitting at your computer and try out the examples shown.
Before beginning, make sure you have access to the HR sample schema described in
SQL*Plus Quick Start .

7.1 About Formatting Columns
Through the SQL*Plus COLUMN command, you can change the column headings and
reformat the column data in your query results.

7.1.1 About Changing Column Headings
When displaying column headings, you can either use the default heading or you can
change it using the COLUMN command. The following sections describe how default
headings are derived and how to alter them using the COLUMN command. See the
COLUMN command for more details.

7.1.1.1 Default Headings
SQL*Plus uses column or expression names as default column headings when
displaying query results. Column names are often short and cryptic, however, and
expressions can be hard to understand.

7.1.1.2 Changing Default Headings
You can define a more useful column heading with the HEADING clause of the
COLUMN command, in the following format:

COLUMN column_name HEADING column_heading

LAST NAME MONTHLY SALARY COMMISSION
------------------------- -------------- ----------
Russell 14000 .4
Partners 13500 .3
Errazuriz 12000 .3
Cambrault 11000 .3
Zlotkey 10500 .2

7-1

Note:

The new headings will remain in effect until you enter different headings,
reset each column's format, or exit from SQL*Plus.

To change a column heading to two or more words, enclose the new heading in single
or double quotation marks when you enter the COLUMN command. To display a
column heading on more than one line, use a vertical bar (|) where you want to begin a
new line. (You can use a character other than a vertical bar by changing the setting of
the HEADSEP variable of the SET command. See the SET command for more
information.)

LAST MONTHLY
NAME SALARY COMMISSION
------------------------- ---------- ----------
Russell 14000 .4
Partners 13500 .3
Errazuriz 12000 .3
Cambrault 11000 .3
Zlotkey 10500 .2

LAST MONTHLY
NAME SALARY COMMISSION
========================= ========== ==========
Russell 14000 .4
Partners 13500 .3
Errazuriz 12000 .3
Cambrault 11000 .3
Zlotkey 10500 .2

Now change the underline character back to a dash:

SET UNDERLINE '-'

Note:

You must enclose the dash in quotation marks; otherwise, SQL*Plus
interprets the dash as a hyphen indicating that you wish to continue the
command on another line.

Example 7-1 Changing a Column Heading

To produce a report from EMP_DETAILS_VIEW with new headings specified for
LAST_NAME, SALARY, and COMMISSION_PCT, enter the following commands:

COLUMN LAST_NAME HEADING 'LAST NAME'
COLUMN SALARY HEADING 'MONTHLY SALARY'
COLUMN COMMISSION_PCT HEADING COMMISSION
SELECT LAST_NAME, SALARY, COMMISSION_PCT

Chapter 7
About Formatting Columns

7-2

FROM EMP_DETAILS_VIEW
WHERE JOB_ID='SA_MAN';

Example 7-2 Splitting a Column Heading

To give the columns SALARY and LAST_NAME the headings MONTHLY SALARY
and LAST NAME respectively, and to split the new headings onto two lines, enter

COLUMN SALARY HEADING 'MONTHLY|SALARY'
COLUMN LAST_NAME HEADING 'LAST|NAME'

Now rerun the query with the slash (/) command:

 /

Example 7-3 Setting the Underline Character

To change the character used to underline headings to an equal sign and rerun the
query, enter the following commands:

SET UNDERLINE =
/

7.1.2 About Formatting NUMBER Columns
When displaying NUMBER columns, you can either accept the SQL*Plus default
display width or you can change it using the COLUMN command. Later sections
describe the default display and how you can alter it with the COLUMN command. The
format model will stay in effect until you enter a new one, reset the column's format
with

COLUMN column_name CLEAR

or exit from SQL*Plus.

7.1.2.1 Default Display
A NUMBER column's width equals the width of the heading or the width of the
FORMAT plus one space for the sign, whichever is greater. If you do not explicitly use
FORMAT, then the column's width will always be at least the value of SET
NUMWIDTH.

SQL*Plus normally displays numbers with as many digits as are required for accuracy,
up to a standard display width determined by the value of the NUMWIDTH variable of
the SET command (normally 10). If a number is larger than the value of SET
NUMWIDTH, SQL*Plus rounds the number up or down to the maximum number of
characters allowed if possible, or displays hashes if the number is too large.

You can choose a different format for any NUMBER column by using a format model
in a COLUMN command. A format model is a representation of the way you want the
numbers in the column to appear, using 9s to represent digits.

7.1.2.2 Changing the Default Display
The COLUMN command identifies the column you want to format and the model you
want to use, as shown:

COLUMN column_name FORMAT model

Chapter 7
About Formatting Columns

7-3

Use format models to add commas, dollar signs, angle brackets (around negative
values), and leading zeros to numbers in a given column. You can also round the
values to a given number of decimal places, display minus signs to the right of
negative values (instead of to the left), and display values in exponential notation.

To use more than one format model for a single column, combine the desired models
in one COLUMN command (see Example 7-4). See COLUMN for a complete list of
format models and further details.

LAST MONTHLY
NAME SALARY COMMISSION
------------------------- -------- ----------
Russell $14,000 .4
Partners $13,500 .3
Errazuriz $12,000 .3
Cambrault $11,000 .3
Zlotkey $10,500 .2

Use a zero in your format model, as shown, when you use other formats such as a
dollar sign and wish to display a zero in place of a blank for zero values.

Example 7-4 Formatting a NUMBER Column

To display SALARY with a dollar sign, a comma, and the numeral zero instead of a
blank for any zero values, enter the following command:

COLUMN SALARY FORMAT $99,990

Now rerun the current query:

/

7.1.3 About Formatting Datatypes
When displaying datatypes, you can either accept the SQL*Plus default display width
or you can change it using the COLUMN command. The format model will stay in
effect until you enter a new one, reset the column's format with

COLUMN column_name CLEAR

or exit from SQL*Plus. Datatypes, in this manual, include the following types:

• CHAR

• NCHAR

• VARCHAR2 (VARCHAR)

• NVARCHAR2 (NCHAR VARYING)

• DATE

• LONG

• BLOB

BFILE

• CLOB

• NCLOB

Chapter 7
About Formatting Columns

7-4

• XMLType

• JSON

7.1.3.1 Default Display
The default width of datatype columns is the width of the column in the database. The
column width of a LONG, BLOB, BFILE, CLOB, NCLOB or XMLType defaults to the
value of SET LONGCHUNKSIZE or SET LONG, whichever is the smaller.

The default width and format of unformatted DATE columns in SQL*Plus is determined
by the database NLS_DATE_FORMAT parameter. Otherwise, the default format width
is A9. See the FORMAT clause of the COLUMN command for more information on
formatting DATE columns.

Left justification is the default for datatypes.

7.1.3.2 Changing the Default Display
You can change the displayed width of a datatype or DATE, by using the COLUMN
command with a format model consisting of the letter A (for alphanumeric) followed by
a number representing the width of the column in characters.

Within the COLUMN command, identify the column you want to format and the model
you want to use:

COLUMN column_name FORMAT model

If you specify a width shorter than the column heading, SQL*Plus truncates the
heading. See the COLUMN command for more details.

LAST MONTHLY
NAME SALARY COMMISSION
---- -------- ----------
Russ $14,000 .4
ell

Part $13,500 .3
ners

Erra $12,000 .3
zuri
z

LAST MONTHLY
NAME SALARY COMMISSION
---- -------- ----------
Camb $11,000 .3
raul
t

Zlot $10,500 .2
key

Chapter 7
About Formatting Columns

7-5

If the WRAP variable of the SET command is set to ON (its default value), the
employee names wrap to the next line after the fourth character, as shown in
Example 7-5. If WRAP is set to OFF, the names are truncated (cut off) after the fourth
character.

The system variable WRAP controls all columns; you can override the setting of
WRAP for a given column through the WRAPPED, WORD_WRAPPED, and
TRUNCATED clauses of the COLUMN command. See the COLUMN command for
more information on these clauses. You will use the WORD_WRAPPED clause of
COLUMN later in this chapter.

NCLOB, BLOB, BFILE or multibyte CLOB columns cannot be formatted with the
WORD_WRAPPED option. If you format an NCLOB, BLOB, BFILE or multibyte CLOB
column with COLUMN WORD_WRAPPED, the column data behaves as though
COLUMN WRAPPED was applied instead.

Note:

The column heading is truncated regardless of the setting of WRAP or any
COLUMN command clauses.

Now return the column to its previous format:

COLUMN LAST_NAME FORMAT A10

Building

Owned

For more information about the createXML, extract, text and getStringVal functions,
and about creating and manipulating XMLType data, see Oracle Database PL/SQL
Packages and Types Reference.

Example 7-5 Formatting a Character Column

To set the width of the column LAST_NAME to four characters and rerun the current
query, enter

COLUMN LAST_NAME FORMAT A4
/

Example 7-6 Formatting an XMLType Column

Before illustrating how to format an XMLType column, you must create a table with an
XMLType column definition, and insert some data into the table. You can create an
XMLType column like any other user-defined column. To create a table containing an
XMLType column, enter

CREATE TABLE warehouses (
 warehouse_id NUMBER(3),
 warehouse_spec SYS.XMLTYPE,
 warehouse_name VARCHAR2 (35),
 location_id NUMBER(4));

Chapter 7
About Formatting Columns

7-6

To insert a new record containing warehouse_id and warehouse_spec values into the
new warehouses table, enter

INSERT into warehouses (warehouse_id, warehouse_spec)
 VALUES (100, sys.XMLTYPE.createXML(
 '<Warehouse whNo="100">
 <Building>Owned</Building>
 </Warehouse>'));

To set the XMLType column width to 20 characters and then select the XMLType
column, enter

COLUMN Building FORMAT A20
SELECT
 w.warehouse_spec.extract('/Warehouse/Building/text()').getStringVal()
 "Building"
 FROM warehouses w;

7.1.4 Copying Column Display Attributes
When you want to give more than one column the same display attributes, you can
reduce the length of the commands you must enter by using the LIKE clause of the
COLUMN command. The LIKE clause tells SQL*Plus to copy the display attributes of
a previously defined column to the new column, except for changes made by other
clauses in the same command.

LAST MONTHLY
NAME SALARY BONUS
---------- -------- --------
Russell $14,000 $0
Partners $13,500 $0
Errazuriz $12,000 $0
Cambrault $11,000 $0
Zlotkey $10,500 $0

Example 7-7 Copying a Column's Display Attributes

To give the column COMMISSION_PCT the same display attributes you gave to
SALARY, but to specify a different heading, enter the following command:

COLUMN COMMISSION_PCT LIKE SALARY HEADING BONUS

Rerun the query:

/

7.1.5 Listing and Resetting Column Display Attributes
To list the current display attributes for a given column, use the COLUMN command
followed by the column name only, as shown:

COLUMN column_name

To list the current display attributes for all columns, enter the COLUMN command with
no column names or clauses after it:

COLUMN

Chapter 7
About Formatting Columns

7-7

To reset the display attributes for a column to their default values, use the CLEAR
clause of the COLUMN command as shown:

COLUMN column_name CLEAR

columns cleared

Example 7-8 Resetting Column Display Attributes to their Defaults

To reset all column display attributes to their default values, enter:

CLEAR COLUMNS

7.1.6 About Suppressing and Restoring Column Display Attributes
You can suppress and restore the display attributes you have given a specific column.
To suppress a column's display attributes, enter a COLUMN command in the following
form:

COLUMN column_name OFF

OFF tells SQL*Plus to use the default display attributes for the column, but does not
remove the attributes you have defined through the COLUMN command. To restore
the attributes you defined through COLUMN, use the ON clause:

COLUMN column_name ON

7.1.7 Printing a Line of Characters after Wrapped Column Values
As you have seen, by default SQL*Plus wraps column values to additional lines when
the value does not fit the column width. If you want to insert a record separator (a line
of characters or a blank line) after each wrapped line of output (or after every row), use
the RECSEP and RECSEPCHAR variables of the SET command.

RECSEP determines when the line of characters is printed; you set RECSEP to EACH
to print after every line, to WRAPPED to print after wrapped lines, and to OFF to
suppress printing. The default setting of RECSEP is WRAPPED.

RECSEPCHAR sets the character printed in each line. You can set RECSEPCHAR to
any character.

You may wish to wrap whole words to additional lines when a column value wraps to
additional lines. To do so, use the WORD_WRAPPED clause of the COLUMN
command as shown:

COLUMN column_name WORD_WRAPPED

LAST_NAME JOB_TITLE CITY
------------------------- -------------------- --------
King President Seattle
Kochhar Administration Vice Seattle
 President

De Haan Administration Vice Seattle
 President

Chapter 7
About Formatting Columns

7-8

Russell Sales Manager Oxford
Partners Sales Manager Oxford
Hartstein Marketing Manager Toronto

6 rows selected.

If you set RECSEP to EACH, SQL*Plus prints a line of characters after every row
(after every department, for the above example).

Before continuing, set RECSEP to OFF to suppress the printing of record separators:

SET RECSEP OFF

Example 7-9 Printing a Line of Characters after Wrapped Column Values

To print a line of dashes after each wrapped column value, enter the commands:

SET RECSEP WRAPPED
SET RECSEPCHAR "-"

Finally, enter the following query:

SELECT LAST_NAME, JOB_TITLE, CITY
FROM EMP_DETAILS_VIEW
WHERE SALARY>12000;

Now restrict the width of the column JOB_TITLE and tell SQL*Plus to wrap whole
words to additional lines when necessary:

COLUMN JOB_TITLE FORMAT A20 WORD_WRAPPED

Run the query:

/

7.2 About Clarifying Your Report with Spacing and
Summary Lines

When you use an ORDER BY clause in your SQL SELECT command, rows with the
same value in the ordered column (or expression) are displayed together in your
output. You can make this output more useful to the user by using the SQL*Plus
BREAK and COMPUTE commands to create subsets of records and add space or
summary lines after each subset.

The column you specify in a BREAK command is called a break column. By including
the break column in your ORDER BY clause, you create meaningful subsets of
records in your output. You can then add formatting to the subsets within the same
BREAK command, and add a summary line (containing totals, averages, and so on)
by specifying the break column in a COMPUTE command.

SELECT DEPARTMENT_ID, LAST_NAME, SALARY
FROM EMP_DETAILS_VIEW
WHERE SALARY > 12000
ORDER BY DEPARTMENT_ID;

DEPARTMENT_ID LAST_NAME SALARY
------------- ------------------------- ----------

Chapter 7
About Clarifying Your Report with Spacing and Summary Lines

7-9

 20 Hartstein 13000
 80 Russell 14000
 80 Partners 13500
 90 King 24000
 90 Kochhar 17000
 90 De Haan 17000

6 rows selected.

To make this report more useful, you would use BREAK to establish
DEPARTMENT_ID as the break column. Through BREAK you could suppress
duplicate values in DEPARTMENT_ID and place blank lines or begin a new page
between departments. You could use BREAK in conjunction with COMPUTE to
calculate and print summary lines containing the total salary for each department and
for all departments. You could also print summary lines containing the average,
maximum, minimum, standard deviation, variance, or row count.

7.2.1 Suppressing Duplicate Values in Break Columns
The BREAK command suppresses duplicate values by default in the column or
expression you name. Thus, to suppress the duplicate values in a column specified in
an ORDER BY clause, use the BREAK command in its simplest form:

BREAK ON break_column

Note:

Whenever you specify a column or expression in a BREAK command, use
an ORDER BY clause specifying the same column or expression. If you do
not do this, breaks occur every time the column value changes.

DEPARTMENT_ID LAST_NAME SALARY
------------- ------------------------- ----------
 20 Hartstein 13000
 80 Russell 14000
 Partners 13500
 90 King 24000
 Kochhar 17000
 De Haan 17000

6 rows selected.

Example 7-10 Suppressing Duplicate Values in a Break Column

To suppress the display of duplicate department numbers in the query results shown,
enter the following commands:

BREAK ON DEPARTMENT_ID;

For the following query (which is the current query stored in the buffer):

Chapter 7
About Clarifying Your Report with Spacing and Summary Lines

7-10

SELECT DEPARTMENT_ID, LAST_NAME, SALARY
FROM EMP_DETAILS_VIEW
WHERE SALARY > 12000
ORDER BY DEPARTMENT_ID;

7.2.2 Inserting Space when a Break Column's Value Changes
You can insert blank lines or begin a new page each time the value changes in the
break column. To insert n blank lines, use the BREAK command in the following form:

BREAK ON break_column SKIP n

To skip a page, use the command in this form:

BREAK ON break_column SKIP PAGE

DEPARTMENT_ID LAST_NAME SALARY
------------- ------------------------- ----------
 20 Hartstein 13000

 80 Russell 14000
 Partners 13500

 90 King 24000
 Kochhar 17000
 De Haan 17000

6 rows selected.

Example 7-11 Inserting Space when a Break Column's Value Changes

To place one blank line between departments, enter the following command:

BREAK ON DEPARTMENT_ID SKIP 1

Now rerun the query:

/

7.2.3 Inserting Space after Every Row
You may wish to insert blank lines or a blank page after every row. To skip n lines after
every row, use BREAK in the following form:

BREAK ON ROW SKIP n

To skip a page after every row, use

BREAK ON ROW SKIP PAGE

Note:

SKIP PAGE does not cause a physical page break character to be generated
unless you have also specified NEWPAGE 0.

Chapter 7
About Clarifying Your Report with Spacing and Summary Lines

7-11

7.2.4 Using Multiple Spacing Techniques
Suppose you have more than one column in your ORDER BY clause and wish to
insert space when each column's value changes. Each BREAK command you enter
replaces the previous one. Thus, if you want to use different spacing techniques in one
report or insert space after the value changes in more than one ordered column, you
must specify multiple columns and actions in a single BREAK command.

 Page: 1
DEPARTMENT_ID JOB_ID LAST_NAME SALARY
------------- ---------- ------------------------- ----------
 20 MK_MAN Hartstein 13000

 Page: 2
DEPARTMENT_ID JOB_ID LAST_NAME SALARY
------------- ---------- ------------------------- ----------
 80 SA_MAN Russell 14000
 Partners 13500

 Page: 3
DEPARTMENT_ID JOB_ID LAST_NAME SALARY
------------- ---------- ------------------------- ----------
 90 AD_PRES King 24000

 AD_VP Kochhar 17000
 De Haan 17000

6 rows selected.

Example 7-12 Combining Spacing Techniques

Type the following:

SELECT DEPARTMENT_ID, JOB_ID, LAST_NAME, SALARY
FROM EMP_DETAILS_VIEW
WHERE SALARY>12000
ORDER BY DEPARTMENT_ID, JOB_ID;

Now, to skip a page when the value of DEPARTMENT_ID changes and one line when
the value of JOB_ID changes, enter the following command:

BREAK ON DEPARTMENT_ID SKIP PAGE ON JOB_ID SKIP 1

To show that SKIP PAGE has taken effect, create a TTITLE with a page number:

TTITLE COL 35 FORMAT 9 'Page:' SQL.PNO

Run the new query to see the results:

7.2.5 Listing and Removing Break Definitions
Before continuing, turn off the top title display without changing its definition:

TTITLE OFF

Chapter 7
About Clarifying Your Report with Spacing and Summary Lines

7-12

You can list your current break definition by entering the BREAK command with no
clauses:

BREAK

You can remove the current break definition by entering the CLEAR command with the
BREAKS clause:

CLEAR BREAKS

You may wish to place the command CLEAR BREAKS at the beginning of every script
to ensure that previously entered BREAK commands will not affect queries you run in
a given file.

7.2.6 Computing Summary Lines when a Break Column's Value
Changes

If you organize the rows of a report into subsets with the BREAK command, you can
perform various computations on the rows in each subset. You do this with the
functions of the SQL*Plus COMPUTE command. Use the BREAK and COMPUTE
commands together in the following forms:

BREAK ON break_column
COMPUTE function LABEL label_name OF column column column
... ON break_column

You can include multiple break columns and actions, such as skipping lines in the
BREAK command, as long as the column you name after ON in the COMPUTE
command also appears after ON in the BREAK command. To include multiple break
columns and actions in BREAK when using it in conjunction with COMPUTE, use
these commands in the following forms:

BREAK ON break_column_1 SKIP PAGE ON break_column_2 SKIP 1
COMPUTE function LABEL label_name OF column column column
... ON break_column_2

The COMPUTE command has no effect without a corresponding BREAK command.

You can COMPUTE on NUMBER columns and, in certain cases, on all types of
columns. For more information see the COMPUTE command.

The following table lists compute functions and their effects

Table 7-1 Compute Functions

Function... Computes the...

SUM
Sum of the values in the column.

MINIMUM
Minimum value in the column.

MAXIMUM
Maximum value in the column.

AVG
Average of the values in the column.

Chapter 7
About Clarifying Your Report with Spacing and Summary Lines

7-13

Table 7-1 (Cont.) Compute Functions

Function... Computes the...

STD
Standard deviation of the values in the column.

VARIANCE
Variance of the values in the column.

COUNT
Number of non-null values in the column.

NUMBER
Number of rows in the column.

The function you specify in the COMPUTE command applies to all columns you enter
after OF and before ON. The computed values print on a separate line when the value
of the ordered column changes.

Labels for ON REPORT and ON ROW computations appear in the first column;
otherwise, they appear in the column specified in the ON clause.

You can change the compute label by using COMPUTE LABEL. If you do not define a
label for the computed value, SQL*Plus prints the unabbreviated function keyword.

The compute label can be suppressed by using the NOPRINT option of the COLUMN
command on the break column. See the COMPUTE command for more details. If you
use the NOPRINT option for the column on which the COMPUTE is being performed,
the COMPUTE result is also suppressed.

break on DEPARTMENT_ID page nodup
 on JOB_ID skip 1 nodup

Now enter the following COMPUTE command and run the current query:

COMPUTE SUM OF SALARY ON DEPARTMENT_ID
/

DEPARTMENT_ID JOB_ID LAST_NAME SALARY
------------- ---------- ------------------------- ----------
 20 MK_MAN Hartstein 13000
************* ********** ----------
sum 13000

DEPARTMENT_ID JOB_ID LAST_NAME SALARY
------------- ---------- ------------------------- ----------
 80 SA_MAN Russell 14000
 Partners 13500

************* ********** ----------
sum 27500

DEPARTMENT_ID JOB_ID LAST_NAME SALARY
------------- ---------- ------------------------- ----------
 90 AD_PRES King 24000

Chapter 7
About Clarifying Your Report with Spacing and Summary Lines

7-14

 AD_VP Kochhar 17000
 De Haan 17000

************* ********** ----------
sum 58000

6 rows selected.

To compute the sum of salaries for departments 10 and 20 without printing the
compute label:

COLUMN DUMMY NOPRINT;
COMPUTE SUM OF SALARY ON DUMMY;
BREAK ON DUMMY SKIP 1;
SELECT DEPARTMENT_ID DUMMY,DEPARTMENT_ID, LAST_NAME, SALARY
FROM EMP_DETAILS_VIEW
WHERE SALARY>12000
ORDER BY DEPARTMENT_ID;

DEPARTMENT_ID LAST_NAME SALARY
------------- ------------------------- ----------
 20 Hartstein 13000

 13000

 80 Russell 14000
 80 Partners 13500

 27500

 90 King 24000
 90 Kochhar 17000
 90 De Haan 17000

 58000

6 rows selected.

To compute the salaries just at the end of the report:

COLUMN DUMMY NOPRINT;
COMPUTE SUM OF SALARY ON DUMMY;
BREAK ON DUMMY;
SELECT NULL DUMMY,DEPARTMENT_ID, LAST_NAME, SALARY
FROM EMP_DETAILS_VIEW
WHERE SALARY>12000
ORDER BY DEPARTMENT_ID;

DEPARTMENT_ID LAST_NAME SALARY
------------- ------------------------- ----------
 20 Hartstein 13000
 80 Russell 14000
 80 Partners 13500
 90 King 24000

Chapter 7
About Clarifying Your Report with Spacing and Summary Lines

7-15

 90 Kochhar 17000
 90 De Haan 17000

 98500

6 rows selected.

When you establish the format of a NUMBER column, you must allow for the size of
the sums included in the report.

Example 7-13 Computing and Printing Subtotals

To compute the total of SALARY by department, first list the current BREAK definition:

BREAK

which displays current BREAK definitions:

7.2.7 Computing Summary Lines at the End of the Report
You can calculate and print summary lines based on all values in a column by using
BREAK and COMPUTE in the following forms:

BREAK ON REPORT
COMPUTE function LABEL label_name OF column column column
... ON REPORT

LAST_NAME SALARY
------------------------- ----------
Russell 14000
Partners 13500
Errazuriz 12000
Cambrault 11000
Zlotkey 10500

TOTAL 61000

To print a grand total (or grand average, grand maximum, and so on) in addition to
subtotals (or sub-averages, and so on), include a break column and an ON REPORT
clause in your BREAK command. Then, enter one COMPUTE command for the break
column and another to compute ON REPORT:

BREAK ON break_column ON REPORT
COMPUTE function LABEL label_name OF column ON break_column
COMPUTE function LABEL label_name OF column ON REPORT

Example 7-14 Computing and Printing a Grand Total

To calculate and print the grand total of salaries for all sales people and change the
compute label, first enter the following BREAK and COMPUTE commands:

BREAK ON REPORT
COMPUTE SUM LABEL TOTAL OF SALARY ON REPORT

Next, enter and run a new query:

Chapter 7
About Clarifying Your Report with Spacing and Summary Lines

7-16

SELECT LAST_NAME, SALARY
FROM EMP_DETAILS_VIEW
WHERE JOB_ID='SA_MAN';

7.2.8 Computing Multiple Summary Values and Lines
You can compute and print the same type of summary value on different columns. To
do so, enter a separate COMPUTE command for each column.

1* SELECT LAST_NAME, SALARY

APPEND , COMMISSION_PCT;

Finally, run the revised query to see the results:

/

LAST_NAME SALARY COMMISSION_PCT
------------------------- ---------- --------------
Russell 14000 .4
Partners 13500 .3
Errazuriz 12000 .3
Cambrault 11000 .3
Zlotkey 10500 .2
 ---------- --------------
sum 61000 1.5

You can also print multiple summary lines on the same break column. To do so,
include the function for each summary line in the COMPUTE command as follows:

COMPUTE function LABEL label_name function
 LABEL label_name function LABEL label_name ...
 OF column ON break_column

If you include multiple columns after OF and before ON, COMPUTE calculates and
prints values for each column you specify.

DEPARTMENT_ID LAST_NAME SALARY
------------- ------------------------- ----------
 30 Colmenares 2500
 Himuro 2600
 Tobias 2800
 Baida 2900
 Khoo 3100
 Raphaely 11000
************* ----------
avg 4150
sum 24900

6 rows selected.

Chapter 7
About Clarifying Your Report with Spacing and Summary Lines

7-17

Example 7-15 Computing the Same Type of Summary Value on Different
Columns

To print the total of salaries and commissions for all sales people, first enter the
following COMPUTE command:

COMPUTE SUM OF SALARY COMMISSION_PCT ON REPORT

You do not have to enter a BREAK command; the BREAK you entered in
Example 7-14 is still in effect. Now, change the first line of the select query to include
COMMISSION_PCT:

1

Example 7-16 Computing Multiple Summary Lines on the Same Break Column

To compute the average and sum of salaries for the sales department, first enter the
following BREAK and COMPUTE commands:

BREAK ON DEPARTMENT_ID
COMPUTE AVG SUM OF SALARY ON DEPARTMENT_ID

Now, enter and run the following query:

SELECT DEPARTMENT_ID, LAST_NAME, SALARY
FROM EMP_DETAILS_VIEW
WHERE DEPARTMENT_ID = 30
ORDER BY DEPARTMENT_ID, SALARY;

7.2.9 Listing and Removing COMPUTE Definitions
You can list your current COMPUTE definitions by entering the COMPUTE command
with no clauses:

COMPUTE

breaks cleared

CLEAR COMPUTES

computes cleared

You may wish to place the commands CLEAR BREAKS and CLEAR COMPUTES at
the beginning of every script to ensure that previously entered BREAK and COMPUTE
commands will not affect queries you run in a given file.

Example 7-17 Removing COMPUTE Definitions

To remove all COMPUTE definitions and the accompanying BREAK definition, enter
the following commands:

CLEAR BREAKS

Chapter 7
About Clarifying Your Report with Spacing and Summary Lines

7-18

7.3 About Defining Page and Report Titles and Dimensions
The word page refers to a screen full of information on your display or a page of a
spooled (printed) report. You can place top and bottom titles on each page, set the
number of lines per page, and determine the width of each line.

The word report refers to the complete results of a query. You can also place headers
and footers on each report and format them in the same way as top and bottom titles
on pages.

7.3.1 Setting the Top and Bottom Titles and Headers and Footers
As you have already seen, you can set a title to display at the top of each page of a
report. You can also set a title to display at the bottom of each page. The TTITLE
command defines the top title; the BTITLE command defines the bottom title.

You can also set a header and footer for each report. The REPHEADER command
defines the report header; the REPFOOTER command defines the report footer.

A TTITLE, BTITLE, REPHEADER or REPFOOTER command consists of the
command name followed by one or more clauses specifying a position or format and a
CHAR value you wish to place in that position or give that format. You can include
multiple sets of clauses and CHAR values:

TTITLE position_clause(s) char_value position_clause(s) char_value ...
BTITLE position_clause(s) char_value position_clause(s) char_value ...
REPHEADER position_clause(s) char_value position_clause(s) char_value ...
REPFOOTER position_clause(s) char_value position_clause(s) char_value ...

For descriptions of all TTITLE, BTITLE, REPHEADER and REPFOOTER clauses, see
the TTITLE command and the REPHEADER command.

 ACME SALES DEPARTMENT PERSONNEL REPORT
DEPARTMENT_ID LAST_NAME SALARY
------------- ------------------------- ----------
 30 Colmenares 2500
 30 Himuro 2600
 30 Tobias 2800
 30 Baida 2900
 30 Khoo 3100
 30 Raphaely 11000

 COMPANY CONFIDENTIAL

6 rows selected.

 ACME SALES DEPARTMENT PERSONNEL REPORT
 PERFECT WIDGETS

 COMPANY CONFIDENTIAL

Chapter 7
About Defining Page and Report Titles and Dimensions

7-19

 ACME SALES DEPARTMENT PERSONNEL REPORT
DEPARTMENT_ID LAST_NAME SALARY
------------- ------------------------- ----------
 30 Colmenares 2500
 30 Himuro 2600
 30 Tobias 2800
 30 Baida 2900
 30 Khoo 3100
 30 Raphaely 11000

 COMPANY CONFIDENTIAL

6 rows selected.

To suppress the report header without changing its definition, enter

REPHEADER OFF

Example 7-18 Placing a Top and Bottom Title on a Page

To put titles at the top and bottom of each page of a report, enter

TTITLE CENTER -
"ACME SALES DEPARTMENT PERSONNEL REPORT"
BTITLE CENTER "COMPANY CONFIDENTIAL"

Now run the current query:

/

Example 7-19 Placing a Header on a Report

To put a report header on a separate page, and to center it, enter

REPHEADER PAGE CENTER 'PERFECT WIDGETS'

Now run the current query:

/

which displays the following two pages of output, with the new REPHEADER
displayed on the first page:

7.3.1.1 Positioning Title Elements
The report in the preceding exercises might look more attractive if you give the
company name more emphasis and place the type of report and the department name
on either end of a separate line. It may also help to reduce the line size and thus
center the titles more closely around the data.

You can accomplish these changes by adding some clauses to the TTITLE command
and by resetting the system variable LINESIZE, as the following example shows.

You can format report headers and footers in the same way as BTITLE and TTITLE
using the REPHEADER and REPFOOTER commands.

 A C M E W I D G E T
 ====================

Chapter 7
About Defining Page and Report Titles and Dimensions

7-20

PERSONNEL REPORT SALES DEPARTMENT

DEPARTMENT_ID LAST_NAME SALARY
------------- ------------------------- ----------
 30 Colmenares 2500
 30 Himuro 2600
 30 Tobias 2800
 30 Baida 2900
 30 Khoo 3100
 30 Raphaely 11000
 COMPANY CONFIDENTIAL

6 rows selected.

The LEFT, RIGHT, and CENTER clauses place the following values at the beginning,
end, and center of the line. The SKIP clause tells SQL*Plus to move down one or
more lines.

Note that there is no longer any space between the last row of the results and the
bottom title. The last line of the bottom title prints on the last line of the page. The
amount of space between the last row of the report and the bottom title depends on
the overall page size, the number of lines occupied by the top title, and the number of
rows in a given page. In the above example, the top title occupies three more lines
than the top title in the previous example. You will learn to set the number of lines per
page later in this chapter.

To always print n blank lines before the bottom title, use the SKIP n clause at the
beginning of the BTITLE command. For example, to skip one line before the bottom
title in the example above, you could enter the following command:

BTITLE SKIP 1 CENTER 'COMPANY CONFIDENTIAL'

Example 7-20 Positioning Title Elements

To redisplay the personnel report with a repositioned top title, enter the following
commands:

TTITLE CENTER 'A C M E W I D G E T' SKIP 1 -
CENTER ==================== SKIP 1 LEFT 'PERSONNEL REPORT' -
RIGHT 'SALES DEPARTMENT' SKIP 2
SET LINESIZE 60
/

7.3.1.2 Indenting a Title Element
You can use the COL clause in TTITLE or BTITLE to indent the title element a specific
number of spaces. For example, COL 1 places the following values in the first
character position, and so is equivalent to LEFT, or an indent of zero. COL 15 places
the title element in the 15th character position, indenting it 14 spaces.

ACME WIDGET
 SALES DEPARTMENT PERSONNEL REPORT

DEPARTMENT_ID LAST_NAME SALARY
------------- ------------------------- ----------
 30 Colmenares 2500

Chapter 7
About Defining Page and Report Titles and Dimensions

7-21

 30 Himuro 2600
 30 Tobias 2800
 30 Baida 2900
 30 Khoo 3100
 30 Raphaely 11000

 COMPANY CONFIDENTIAL

6 rows selected.

Example 7-21 Indenting a Title Element

To print the company name left-aligned with the report name indented five spaces on
the next line, enter

TTITLE LEFT 'ACME WIDGET' SKIP 1 -
COL 6 'SALES DEPARTMENT PERSONNEL REPORT' SKIP 2

Now rerun the current query to see the results:

/

7.3.1.3 Entering Long Titles
If you need to enter a title greater than 500 characters in length, you can use the
SQL*Plus command DEFINE to place the text of each line of the title in a separate
substitution variable:

DEFINE LINE1 = 'This is the first line...'
DEFINE LINE2 = 'This is the second line...'
DEFINE LINE3 = 'This is the third line...'

Then, reference the variables in your TTITLE or BTITLE command as follows:

TTITLE CENTER LINE1 SKIP 1 CENTER LINE2 SKIP 1 -
CENTER LINE3

7.3.2 Displaying System-Maintained Values in Titles
You can display the current page number and other system-maintained values in your
title by entering a system value name as a title element, for example:

TTITLE LEFT system-maintained_value_name

There are five system-maintained values you can display in titles, the most commonly
used of which is SQL.PNO (the current page number). See TTITLE for a list of system-
maintained values you can display in titles.

ACMEWIDGET PAGE: 1

DEPARTMENT_ID LAST_NAME SALARY
------------- ------------------------- ----------
 30 Colmenares 2500
 30 Himuro 2600
 30 Tobias 2800
 30 Baida 2900
 30 Khoo 3100

Chapter 7
About Defining Page and Report Titles and Dimensions

7-22

 30 Raphaely 11000

 COMPANY CONFIDENTIAL

6 rows selected.

Note that SQL.PNO has a format ten spaces wide. You can change this format with
the FORMAT clause of TTITLE (or BTITLE).

ACME WIDGET 'PAGE:' 1

DEPARTMENT_ID LAST_NAME SALARY
------------- ------------------------- ----------
 30 Colmenares 2500
 30 Himuro 2600
 30 Tobias 2800
 30 Baida 2900
 30 Khoo 3100
 30 Raphaely 11000

 COMPANY CONFIDENTIAL

6 rows selected.

Example 7-22 Displaying the Current Page Number in a Title

To display the current page number at the top of each page, along with the company
name, enter the following command:

TTITLE LEFT 'ACME WIDGET' RIGHT 'PAGE:' SQL.PNO SKIP 2

Now rerun the current query:

/

Example 7-23 Formatting a System-Maintained Value in a Title

To close up the space between the word PAGE: and the page number, reenter the
TTITLE command as shown:

TTITLE LEFT 'ACME WIDGET' RIGHT 'PAGE:' FORMAT 999 -
SQL.PNO SKIP 2

Now rerun the query:

/

7.3.3 Listing, Suppressing, and Restoring Page Title Definitions
To list a page title definition, enter the appropriate title command with no clauses:

TTITLE
BTITLE

To suppress a title definition, enter:

Chapter 7
About Defining Page and Report Titles and Dimensions

7-23

TTITLE OFF
BTITLE OFF

These commands cause SQL*Plus to cease displaying titles on reports, but do not
clear the current definitions of the titles. You may restore the current definitions by
entering:

TTITLE ON
BTITLE ON

7.3.4 Displaying Column Values in Titles
You may wish to create a master/detail report that displays a changing master column
value at the top of each page with the detail query results for that value underneath.
You can reference a column value in a top title by storing the desired value in a
variable and referencing the variable in a TTITLE command. Use the following form of
the COLUMN command to define the variable:

COLUMN column_name NEW_VALUE variable_name

You must include the master column in an ORDER BY clause and in a BREAK
command using the SKIP PAGE clause.

Manager: 101

DEPARTMENT_ID LAST_NAME SALARY
------------- ------------------------- ----------
 10 Whalen 4400
 40 Mavris 6500
 70 Baer 10000
 100 Greenberg 12000
 110 Higgins 12000

Manager: 201

DEPARTMENT_ID LAST_NAME SALARY
------------- ------------------------- ----------
 20 Fay 6000

6 rows selected.

If you want to print the value of a column at the bottom of the page, you can use the
COLUMN command in the following form:

COLUMN column_name OLD_VALUE variable_name

SQL*Plus prints the bottom title as part of the process of breaking to a new page—
after finding the new value for the master column. Therefore, if you simply referenced
the NEW_VALUE of the master column, you would get the value for the next set of
details. OLD_VALUE remembers the value of the master column that was in effect
before the page break began.

Example 7-24 Creating a Master/Detail Report

Suppose you want to create a report that displays two different managers' employee
numbers, each at the top of a separate page, and the people reporting to the manager

Chapter 7
About Defining Page and Report Titles and Dimensions

7-24

on the same page as the manager's employee number. First create a variable,
MGRVAR, to hold the value of the current manager's employee number:

COLUMN MANAGER_ID NEW_VALUE MGRVAR NOPRINT

Because you will only display the managers' employee numbers in the title, you do not
want them to print as part of the detail. The NOPRINT clause you entered above tells
SQL*Plus not to print the column MANAGER_ID.

Next, include a label and the value in your page title, enter the proper BREAK
command, and suppress the bottom title from the last example:

TTITLE LEFT 'Manager: ' MGRVAR SKIP 2
BREAK ON MANAGER_ID SKIP PAGE
BTITLE OFF

Finally, enter and run the following query:

SELECT MANAGER_ID, DEPARTMENT_ID, LAST_NAME, SALARY
FROM EMP_DETAILS_VIEW
WHERE MANAGER_ID IN (101, 201)
ORDER BY MANAGER_ID, DEPARTMENT_ID;

7.3.5 About Displaying the Current Date in Titles
You can, of course, date your reports by simply typing a value in the title. This is
satisfactory for ad hoc reports, but if you want to run the same report repeatedly, you
would probably prefer to have the date automatically appear when the report is run.
You can do this by creating a variable to hold the current date.

You can reference the predefined substitution variable _DATE to display the current
date in a title as you would any other variable.

The date format model you include in your LOGIN file or in your SELECT statement
determines the format in which SQL*Plus displays the date. See your Oracle Database
SQL Language Reference for more information on date format models. See Modifying
Your LOGIN File for more information about the LOGIN file.

You can also enter these commands interactively. See COLUMN for more information.

7.3.6 Setting Page Dimensions
Typically, a page of a report contains the number of blank line(s) set in the NEWPAGE
variable of the SET command, a top title, column headings, your query results, and a
bottom title. SQL*Plus displays a report that is too long to fit on one page on several
consecutive pages, each with its own titles and column headings. The amount of data
SQL*Plus displays on each page depends on the current page dimensions.

The default page dimensions used by SQL*Plus are shown underneath:

• number of lines before the top title: 1

• number of lines per page, from the top title to the bottom of the page: 14

• number of characters per line: 80

You can change these settings to match the size of your computer screen or, for
printing, the size of a sheet of paper.

Chapter 7
About Defining Page and Report Titles and Dimensions

7-25

You can change the page length with the system variable PAGESIZE. For example,
you may wish to do so when you print a report.

To set the number of lines between the beginning of each page and the top title, use
the NEWPAGE variable of the SET command:

SET NEWPAGE number_of_lines

If you set NEWPAGE to zero, SQL*Plus skips zero lines and displays and prints a
formfeed character to begin a new page. On most types of computer screens, the
formfeed character clears the screen and moves the cursor to the beginning of the first
line. When you print a report, the formfeed character makes the printer move to the top
of a new sheet of paper, even if the overall page length is less than that of the paper. If
you set NEWPAGE to NONE, SQL*Plus does not print a blank line or formfeed
between report pages.

To set the number of lines on a page, use the PAGESIZE variable of the SET
command:

SET PAGESIZE number_of_lines

You may wish to reduce the line size to center a title properly over your output, or you
may want to increase line size for printing on wide paper. You can change the line
width using the LINESIZE variable of the SET command:

SET LINESIZE number_of_characters

 ACME WIDGET PERSONNEL REPORT
 01-JAN-2001

 FIRST LAST MONTHLY
DEPARTMENT_ID NAME NAME SALARY
------------- -------------------- ------------------------- --------
 90 Steven King $24,000
 90 Neena Kochhar $17,000
 90 Lex De Haan $17,000
 80 John Russell $14,000
 80 Karen Partners $13,500
 20 Michael Hartstein $13,000

6 rows selected.

Now reset PAGESIZE, NEWPAGE, and LINESIZE to their default values:

SET PAGESIZE 14
SET NEWPAGE 1
SET LINESIZE 80

To list the current values of these variables, use the SHOW command:

SHOW PAGESIZE
SHOW NEWPAGE
SHOW LINESIZE

Through the SQL*Plus command SPOOL, you can store your query results in a file or
print them on your computer's default printer.

Chapter 7
About Defining Page and Report Titles and Dimensions

7-26

Example 7-25 Setting Page Dimensions

To set the page size to 66 lines, clear the screen (or advance the printer to a new
sheet of paper) at the start of each page, and set the line size to 70, enter the following
commands:

SET PAGESIZE 66
SET NEWPAGE 0
SET LINESIZE 70

Now enter and run the following commands to see the results:

TTITLE CENTER 'ACME WIDGET PERSONNEL REPORT' SKIP 1 -
CENTER '01-JAN-2001' SKIP 2

Now run the following query:

COLUMN FIRST_NAME HEADING 'FIRST|NAME';
COLUMN LAST_NAME HEADING 'LAST|NAME';
COLUMN SALARY HEADING 'MONTHLY|SALARY' FORMAT $99,999;
SELECT DEPARTMENT_ID, FIRST_NAME, LAST_NAME, SALARY
FROM EMP_DETAILS_VIEW
WHERE SALARY>12000;

7.4 About Storing and Printing Query Results
Send your query results to a file when you want to edit them with a word processor
before printing or include them in a letter, email, or other document.

To store the results of a query in a file—and still display them on the screen—enter the
SPOOL command in the following form:

SPOOL file_name

If you do not follow the filename with a period and an extension, SPOOL adds a
default file extension to the filename to identify it as an output file. The default varies
with the operating system; on most hosts it is LST or LIS. The extension is not
appended when you spool to system generated files such as /dev/null and /dev/stderr.
See the platform-specific Oracle documentation provided for your operating system for
more information.

SQL*Plus continues to spool information to the file until you turn spooling off, using the
following form of SPOOL:

SPOOL OFF

7.4.1 Creating a Flat File
When moving data between different software products, it is sometimes necessary to
use a "flat" file (an operating system file with no escape characters, headings, or extra
characters embedded). For example, if you do not have Oracle Net, you need to
create a flat file for use with SQL*Loader when moving data from Oracle9i to Oracle
Database 10g.

To create a flat file with SQL*Plus, you first must enter the following SET commands:

SET NEWPAGE 0
SET SPACE 0
SET LINESIZE 80

Chapter 7
About Storing and Printing Query Results

7-27

SET PAGESIZE 0
SET ECHO OFF
SET FEEDBACK OFF
SET VERIFY OFF
SET HEADING OFF
SET MARKUP HTML OFF SPOOL OFF

After entering these commands, you use the SPOOL command as shown in the
previous section to create the flat file.

The SET COLSEP command may be useful to delineate the columns. For more
information, see the SET command.

7.4.2 Sending Results to a File
To store the results of a query in a file—and still display them on the screen—enter the
SPOOL command in the following form:

SPOOL file_name

SQL*Plus stores all information displayed on the screen after you enter the SPOOL
command in the file you specify.

7.4.3 Sending Results to a Printer
To print query results, spool them to a file as described in the previous section. Then,
instead of using SPOOL OFF, enter the command in the following form:

SPOOL OUT

SQL*Plus stops spooling and copies the contents of the spooled file to your
computer's standard (default) printer. SPOOL OUT does not delete the spool file after
printing.

 A C M E W I D G E T

EMPLOYEE REPORT PAGE: 1

DEPARTMENT LAST NAME MONTHLY SALARY
---------- ------------------------- --------------
 20 Hartstein $13,000
********** --------------
sum $13,000

 80 Russell $14,000
 Partners $13,500
********** --------------
sum $27,500

 90 King $24,000
 Kochhar $17,000
 De Haan $17,000
********** --------------
sum $58,000

Chapter 7
About Storing and Printing Query Results

7-28

sum $98,500
 COMPANY CONFIDENTIAL

6 rows selected.

Example 7-26 Sending Query Results to a Printer

To generate a final report and spool and print the results, create a script named
EMPRPT containing the following commands.

First, use EDIT to create the script with your operating system text editor.

EDIT EMPRPT

Next, enter the following commands into the file, using your text editor:

SPOOL TEMP
CLEAR COLUMNS
CLEAR BREAKS
CLEAR COMPUTES

COLUMN DEPARTMENT_ID HEADING DEPARTMENT
COLUMN LAST_NAME HEADING 'LAST NAME'
COLUMN SALARY HEADING 'MONTHLY SALARY' FORMAT $99,999

BREAK ON DEPARTMENT_ID SKIP 1 ON REPORT
COMPUTE SUM OF SALARY ON DEPARTMENT_ID
COMPUTE SUM OF SALARY ON REPORT

SET PAGESIZE 24
SET NEWPAGE 0
SET LINESIZE 70

TTITLE CENTER 'A C M E W I D G E T' SKIP 2 -
LEFT 'EMPLOYEE REPORT' RIGHT 'PAGE:' -
FORMAT 999 SQL.PNO SKIP 2
BTITLE CENTER 'COMPANY CONFIDENTIAL'

SELECT DEPARTMENT_ID, LAST_NAME, SALARY
FROM EMP_DETAILS_VIEW
WHERE SALARY>12000
ORDER BY DEPARTMENT_ID;

SPOOL OFF

If you do not want to see the output on your screen, you can also add SET TERMOUT
OFF to the beginning of the file and SET TERMOUT ON to the end of the file. Save
and close the file in your text editor (you will automatically return to SQL*Plus). Now,
run the script EMPRPT:

@EMPRPT

SQL*Plus displays the output on your screen (unless you set TERMOUT to OFF), and
spools it to the file TEMP:

Chapter 7
About Storing and Printing Query Results

7-29

8
Generating Reports from SQL*Plus

This chapter explains how to generate a HTML and CSV reports containing your query
results. This chapter covers the following topics:

• About Creating Reports using Command-line SQL*Plus

8.1 About Creating Reports using Command-line SQL*Plus
In addition to plain text output, the SQL*Plus command-line interface enables you to
generate either a complete web page, HTML output which can be embedded in a web
page, or data in CSV format. You can use SQLPLUS -MARKUP "HTML ON" or SET
MARKUP HTML ON SPOOL ON to produce complete HTML pages automatically
encapsulated with <HTML> and <BODY> tags. You can use SQLPLUS -MARKUP
"CSV ON" or SET MARKUP CSV ON to produce reports in CSV format.

By default, data retrieved with MARKUP HTML ON is output in HTML, though you can
optionally direct output to the HTML <PRE> tag so that it displays in a web browser
exactly as it appears in SQL*Plus. See the SQLPLUS MARKUP Options and the SET
MARKUP command for more information about these commands.

SQLPLUS -MARKUP "HTML ON" is useful when embedding SQL*Plus in program
scripts. On starting, it outputs the HTML and BODY tags before executing any
commands. All subsequent output is in HTML until SQL*Plus terminates.

The -SILENT and -RESTRICT command-line options may be effectively used with -
MARKUP to suppress the display of SQL*Plus prompt and banner information, and to
restrict the use of some commands.

SET MARKUP HTML ON SPOOL ON generates an HTML page for each
subsequently spooled file. The HTML tags in a spool file are closed when SPOOL OFF
is executed or SQL*Plus exits.

You can use SET MARKUP HTML ON SPOOL OFF to generate HTML output suitable
for embedding in an existing web page. HTML output generated this way has no
<HTML> or <BODY> tags.

You can enable CSV markup while logging into a user session, by using the -
M[ARKUP] CSV ON option at the SQL*Plus command line. For more information, see
SQL*Plus Program Syntax. While logged in to a user session, you can enable CSV
markup by using the SET MARKUP CSV ON command.

You can specify the delimiter character by using the DELIMITER option. You can also
output text without quotes by using QUOTE OFF.

You can suppress display of data returned by a query by using the ONLY option of the
SET FEEDBACK command. The number of rows selected and returned by the query
is displayed.

8-1

8.1.1 Creating HTML Reports
During a SQL*Plus session, use the SET MARKUP command interactively to write
HTML to a spool file. You can view the output in a web browser.

SET MARKUP HTML ON SPOOL ON only specifies that SQL*Plus output will be
HTML encoded, it does not create or begin writing to an output file. You must use the
SQL*Plus SPOOL command to start generation of a spool file. This file then has HTML
tags including <HTML> and </HTML>.

When creating a HTML file, it is important and convenient to specify a .html or .htm file
extension which are standard file extensions for HTML files. This enables you to easily
identify the type of your output files, and also enables web browsers to identify and
correctly display your HTML files. If no extension is specified, the default SQL*Plus file
extension is used.

You use SPOOL OFF or EXIT to append final HTML tags to the spool file and then
close it. If you enter another SPOOL filename command, the current spool file is
closed as for SPOOL OFF or EXIT, and a new HTML spool file with the specified
name is created.

You can use the SET MARKUP command to enable or disable HTML output as
required.

In this example, the prompts and query text have not been suppressed. Depending on
how you invoke a script, you can use SET ECHO OFF or command-line -SILENT
options to do this.

The SQL*Plus commands in this example contain several items of usage worth noting:

• The hyphen used to continue lines in long SQL*Plus commands.

• The TABLE option to set table WIDTH and BORDER attributes.

• The COLUMN command to set ENTMAP OFF for the DEPARTMENT_NAME
column to enable the correct formation of HTML hyperlinks. This makes sure that
any HTML special characters such as quotes and angle brackets are not replaced
by their equivalent entities, ", &, < and >.

• The use of quotes and concatenation characters in the SELECT statement to
create hyperlinks by concatenating string and variable elements.

Chapter 8
About Creating Reports using Command-line SQL*Plus

8-2

View the report.html source in your web browser, or in a text editor to see that the
table cells for the Department column contain fully formed hyperlinks as shown:

<html>
<head>
<TITLE>Department Report</TITLE> <STYLE type="text/css">
<!-- BODY {background: #FFFFC6} --> </STYLE>
<meta name="generator" content="SQL*Plus 10.2.0.1">
</head>
<body TEXT="#FF00Ff">
SQL> SELECT '<A HREF="http://oracle.com/'
||DEPARTMENT_NAME||'.html">'||DEPARTMENT_NAME
||'' DEPARTMENT_NAME, CITY

 2 FROM EMP_DETAILS_VIEW

 3* WHERE SALARY>12000

<p>
<table WIDTH="90%" BORDER="5">
<tr><th>DEPARTMENT</th><th>CITY</th></tr>
<tr><td>Executive</td>
<td>Seattle</td></tr>
<tr><td>Executive</td>
<td>Seattle</td></tr>
<tr><td>Executive</td>
<td>Seattle</td></tr>
<tr><td>Sales</td>
<td>Oxford</td></tr>
<tr><td>Sales</td>
<td>Oxford</td></tr>
<tr><td>Marketing</td>
<td>Toronto</td></tr>
</table>
<p>

6 rows selected.

SQL> spool off

</body>
</html>

The SQLPLUS command in this example contains three layers of nested quotes. From
the inside out, these are:

• "2" is a quoted HTML attribute value for BORDER.

Chapter 8
About Creating Reports using Command-line SQL*Plus

8-3

• 'BORDER="2"' is the quoted text argument for the TABLE option.

• "HTML ON TABLE 'BORDER="2"'" is the quoted argument for the -MARKUP
option.

The nesting of quotes may be different in some operating systems or program
scripting languages.

Example 8-1 Creating a Report Interactively

You can create HTML output in an interactive SQL*Plus session using the SET
MARKUP command. You can include an embedded style sheet, or any other valid text
in the HTML <HEAD> tag. Open a SQL*Plus session and enter the following:

SET MARKUP HTML ON SPOOL ON PREFORMAT OFF ENTMAP ON -
HEAD "<TITLE>Department Report</TITLE> -
<STYLE type='text/css'> -
<!-- BODY {background: #FFFFC6} --> -
</STYLE>" -
BODY "TEXT='#FF00Ff'" -
TABLE "WIDTH='90%' BORDER='5'"

You use the COLUMN command to control column output. The following COLUMN
commands create new heading names for the SQL query output. The first command
also turns off entity mapping for the DEPARTMENT_NAME column to allow HTML
hyperlinks to be correctly created in this column of the output data:

COLUMN DEPARTMENT_NAME HEADING 'DEPARTMENT' ENTMAP OFF
COLUMN CITY HEADING 'CITY'

SET MARKUP HTML ON SPOOL ON enables SQL*Plus to write HTML to a spool file.
The following SPOOL command triggers the writing of the <HTML> and <BODY> tags
to the named file:

SPOOL report.html

After the SPOOL command, anything entered or displayed on standard output is
written to the spool file, report.html.

Enter a SQL query:

SELECT ''||
DEPARTMENT_NAME||'' DEPARTMENT_NAME, CITY
FROM EMP_DETAILS_VIEW
WHERE SALARY>12000;

Enter the SPOOL OFF command:

SPOOL OFF

The </BODY> and </HTML> tags are appended to the spool file, report.html, before it
is closed.

The output from report.sql is a file, report.html, that can be loaded into a web browser.
Open report.html in your web browser. It should appear something like the following:

Example 8-2 Creating a Report using the SQLPLUS Command

Enter the following command at the operating system prompt:

SQLPLUS -S -M "HTML ON TABLE 'BORDER="2"'" HR@Ora10g @depart.sql>depart.html

Chapter 8
About Creating Reports using Command-line SQL*Plus

8-4

where depart.sql contains:

SELECT DEPARTMENT_NAME, CITY
FROM EMP_DETAILS_VIEW
WHERE SALARY>12000;
EXIT

This example starts SQL*Plus with user "HR", prompts for the HR password, sets
HTML ON, sets a BORDER attribute for TABLE, and runs the script depart.sql. The
output from depart.sql is a web page which, in this case, has been redirected to the file
depart.html using the ">" operating system redirect command (it may be different on
your operating system). It could be sent to a web browser if SQL*Plus was called in a
web server CGI script. See About Suppressing the Display of SQL*Plus Commands in
Reports for information about calling SQL*Plus from a CGI script.

Start your web browser and enter the appropriate URL to open depart.html:

8.1.1.1 HTML Entities
Certain characters, <, >, " and & have a predefined meaning in HTML. In the previous
example, you may have noticed that the > character was replaced by > as soon as
you entered the SET MARKUP HTML ON command. To enable these characters to be
displayed in your web browser, HTML provides character entities to use instead.

Table 8-1 Equivalent HTML Entities

Character HTML Entity Meaning

< < Start HTML tag label

> > End HTML tag label

" " Double quote

& & Ampersand

The web browser displays the > character, but the actual text in the HTML encoded file
is the HTML entity, >. The SET MARKUP option, ENTMAP, controls the substitution
of HTML entities. ENTMAP is set ON by default. It ensures that the characters <, >, "
and & are always replaced by the HTML entities representing these characters. This
prevents web browsers from misinterpreting these characters when they occur in your
SQL*Plus commands, or in data resulting from your query.

You can set ENTMAP at a global level with SET MARKUP HTML ENTMAP ON, or at
a column level with COLUMN column_name ENTMAP ON.

8.1.2 Creating CSV Reports

You can enable CSV markup while logging into a user session, by using the -
M[ARKUP] CSV ON option at the SQL*Plus command line. For more information, see
SQL*Plus Program Syntax. While logged in to a user session, you can enable CSV
markup by using the SET MARKUP CSV ON command.

You can specify the delimiter character by using the DELIMITER option. You can also
output text without quotes by using QUOTE OFF.

For more information about creating CSV reports, see SET MARKUP CSV ON.

Chapter 8
About Creating Reports using Command-line SQL*Plus

8-5

8.1.3 About Suppressing the Display of SQL*Plus Commands in
Reports

The SQLPLUS -SILENT option is particularly useful when used in combination with -
MARKUP to generate embedded SQL*Plus reports using CGI scripts or operating
system scripts. It suppresses the display of SQL*Plus commands and the SQL*Plus
banner. The HTML output shows only the data resulting from your SQL query.

You can also use SET ECHO OFF to suppress the display of each command in a
script that is executed with the START command.

Chapter 8
About Creating Reports using Command-line SQL*Plus

8-6

9
Tuning SQL*Plus

This chapter provides information about how to tune SQL*Plus for better performance.
It discusses the following topics:

• About Tracing Statements

• About Collecting Timing Statistics

• Tracing Parallel and Distributed Queries

• Execution Plan Output in Earlier Databases

• About SQL*Plus Script Tuning

For information about tuning Oracle Database, see the Oracle Database Performance
Tuning Guide.

9.1 About Tracing Statements
You can automatically get a report on the execution path used by the SQL optimizer
and the statement execution statistics. The report is generated after successful SQL
DML (that is, SELECT, DELETE, UPDATE and INSERT) statements. It is useful for
monitoring and tuning the performance of these statements.

SQL*Plus report output may differ for DML if dynamic sampling is in effect.

9.1.1 Controlling the Autotrace Report
You can control the report by setting the AUTOTRACE system variable.

Autotrace Setting Result

SET AUTOTRACE OFF No AUTOTRACE report is generated. This is the default.

SET AUTOTRACE ON EXPLAIN The AUTOTRACE report shows only the optimizer
execution path.

SET AUTOTRACE ON
STATISTICS

The AUTOTRACE report shows only the SQL statement
execution statistics.

SET AUTOTRACE ON The AUTOTRACE report includes both the optimizer
execution path and the SQL statement execution
statistics.

SET AUTOTRACE TRACEONLY Like SET AUTOTRACE ON, but suppresses the printing
of the user's query output, if any. If STATISTICS is
enabled, query data is still fetched, but not printed.

To use this feature, you must create a PLAN_TABLE table in your schema and then
have the PLUSTRACE role granted to you. DBA privileges are required to grant the
PLUSTRACE role. For information on how to grant a role and how to create the
PLAN_TABLE table, see the Oracle Database SQL Language Reference.

9-1

For more information about the roles and the PLAN_TABLE, see the Oracle Database
SQL Language Reference and the AUTOTRACE variable of the SET command.

Note:

SQL*Plus AUTOTRACE does not support switching containers with the
ALTER SESSION SET CONTAINER option. Statistical data gathered in this
case may be inconsistent.

Example 9-1 Creating a PLAN_TABLE

Run the following commands from your SQL*Plus session to create the PLAN_TABLE
in the HR schema:

CONNECT HR
@$ORACLE_HOME/rdbms/admin/utlxplan.sql

Table created.

Example 9-2 Creating the PLUSTRACE Role

Run the following commands from your SQL*Plus session to create the PLUSTRACE
role and grant it to the DBA:

CONNECT / AS SYSDBA
@$ORACLE_HOME/sqlplus/admin/plustrce.sql

drop role plustrace;

Role dropped.

create role plustrace;

Role created.

grant plustrace to dba with admin option;

Grant succeeded.

Example 9-3 Granting the PLUSTRACE Role

Run the following commands from your SQL*Plus session to grant the PLUSTRACE
role to the HR user:

CONNECT / AS SYSDBA
GRANT PLUSTRACE TO HR;

Grant succeeded.

9.1.2 Execution Plan
The Execution Plan shows the SQL optimizer's query execution path. Execution Plan
output is generated using EXPLAIN PLAN and DBMS_XPLAN.

Chapter 9
About Tracing Statements

9-2

9.1.3 Statistics
The statistics are recorded by the server when your statement executes and indicate
the system resources required to execute your statement. The results include the
following statistics.

Database Statistic Name Description

recursive calls Number of recursive calls generated at both the user and system
level. Oracle Database maintains tables used for internal
processing. When Oracle Database needs to make a change to
these tables, it internally generates an internal SQL statement,
which in turn generates a recursive call.

db block gets Number of times a CURRENT block was requested.

consistent gets Number of times a consistent read was requested for a block

physical reads Total number of data blocks read from disk. This number equals
the value of "physical reads direct" plus all reads into buffer
cache.

redo size Total amount of redo generated in bytes

bytes sent through Oracle
Net Services to client

Total number of bytes sent to the client from the foreground
processes.

bytes received through
Oracle Net Services from
client

Total number of bytes received from the client over Oracle Net.

Oracle Net Services round-
trips to/from client

Total number of Oracle Net messages sent to and received from
the client

sorts (memory) Number of sort operations that were performed completely in
memory and did not require any disk writes

sorts (disk) Number of sort operations that required at least one disk write

rows processed Number of rows processed during the operation

The client referred to in the statistics is SQL*Plus. Oracle Net refers to the generic
process communication between SQL*Plus and the server, regardless of whether
Oracle Net is installed. You cannot change the default format of the statistics report.

For a more complete list of database statistics, see Statistics Descriptions. For more
information about the statistics and how to interpret them, see Gathering Database
Statistics.

LAST_NAME SALARY JOB_TITLE
------------------------- ---------- -----------------------------------
King 24000 President
De Haan 17000 Administration Vice President
Kochhar 17000 Administration Vice President
Partners 13500 Sales Manager
Russell 14000 Sales Manager
Hartstein 13000 Marketing Manager
6 rows selected.

Execution Plan
--
Plan hash value: 2988506077

Chapter 9
About Tracing Statements

9-3

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|
Time

| 0 | SELECT STATEMENT | | 6 | 360 | 6 (17)|
00:00:01 |
|* 1 | HASH JOIN | | 6 | 360 | 6 (17)|
00:00:01 |
|* 2 | TABLE ACCESS FULL| EMPLOYEES| 6 | 204 | 3 (0)|
00:00:01 |
| 3 | TABLE ACCESS FULL| JOBS | 19 | 494 | 2 (0)|
00:00:01

Predicate Information (identified by operation id):

 1 - access("E"."JOB_ID"="J"."JOB_ID")
 2 - filter("E"."SALARY">12000)

Note

 - dynamic sampling used for this statement

Statistics
--
 0 recursive calls
 0 db block gets
 10 consistent gets
 0 physical reads
 0 redo size
 706 bytes sent via Oracle Net Services to client
 496 bytes received via Oracle Net Services from client
 2 Oracle Net Services roundtrips to/from client
 0 sorts (memory)
 0 sorts (disk)
 6 rows processed

6 rows selected.

Execution Plan
--
Plan hash value: 2988506077

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|
Time

| 0 | SELECT STATEMENT | | 6 | 360 | 6 (17)|
00:00:01 |

Chapter 9
About Tracing Statements

9-4

|* 1 | HASH JOIN | | 6 | 360 | 6 (17)|
00:00:01 |
|* 2 | TABLE ACCESS FULL| EMPLOYEES| 6 | 204 | 3 (0)|
00:00:01 |
| 3 | TABLE ACCESS FULL| JOBS | 19 | 494 | 2 (0)|
00:00:01

Predicate Information (identified by operation id):

 1 - access("E"."JOB_ID"="J"."JOB_ID")
 2 - filter("E"."SALARY">12000)

Note

 - dynamic sampling used for this statement

Statistics
--
 0 recursive calls
 0 db block gets
 10 consistent gets
 0 physical reads
 0 redo size
 706 bytes sent via Oracle Net Services to client
 496 bytes received via Oracle Net Services from client
 2 Oracle Net Services roundtrips to/from client
 0 sorts (memory)
 0 sorts (disk)
 6 rows processed

This option is useful when you are tuning a large query, but do not want to see the
query report.

Note:

Your output may vary depending on the server version and configuration.

Example 9-4 Tracing Statements for Performance Statistics and Query
Execution Path

If the SQL buffer contains the following statement:

SELECT E.LAST_NAME, E.SALARY, J.JOB_TITLE
FROM EMPLOYEES E, JOBS J
WHERE E.JOB_ID=J.JOB_ID AND E.SALARY>12000;

The statement can be automatically traced when it is run:

SET AUTOTRACE ON
/

Chapter 9
About Tracing Statements

9-5

Example 9-5 Tracing Statements Without Displaying Query Data

To trace the same statement without displaying the query data, enter:

SET AUTOTRACE TRACEONLY
/

9.2 About Collecting Timing Statistics
Use the SQL*Plus TIMING command to collect and display data on the amount of
computer resources used to run one or more commands or blocks. TIMING collects
data for an elapsed period of time, saving the data on commands run during the period
in a timer.

See the TIMING command, and About Tracing Statements for information about using
AUTOTRACE to collect statistics.

To delete all timers, enter CLEAR TIMING.

9.3 Tracing Parallel and Distributed Queries
When you trace a statement in a parallel or distributed query, the Execution Plan
output depends on the statement you use.

Example 9-6 Tracing Statements With Parallel Query Option

To trace a parallel query running the parallel query option:

create table D2_t1 (unique1 number) parallel -
(degree 6);

Table created.

create table D2_t2 (unique1 number) parallel -
(degree 6);

Table created.

create unique index d2_i_unique1 on d2_t1(unique1);

Index created.

set long 500 longchunksize 500
SET AUTOTRACE ON EXPLAIN
SELECT /*+ INDEX(B,D2_I_UNIQUE1) USE_NL(B) ORDERED -
*/ COUNT (A.UNIQUE1)
FROM D2_T2 A, D2_T1 B
WHERE A.UNIQUE1 = B.UNIQUE1;

Execution Plan
--
Plan hash value: 107954098

| Id | Operation | Name | Rows |Bytes| Cost(%CPU)| Time |
TQ |IN-OUT| PQ Distrib |

Chapter 9
About Collecting Timing Statistics

9-6

| 0 | SELECT STATEMENT | | 1 | 26 | 1 (0)| 00:00:01
1	SORT AGGREGATE		1	26		
2	PX COORDINATOR					
3	PX SEND QC (RANDOM)	:TQ10001	1	26		
Q1,01	P->S	QC (RAND)				
4	SORT AGGREGATE		1	26		
Q1,01	PCWP					
5	NESTED LOOPS		1	26	1 (0)	00:00:01
Q1,01	PCWP					
6	PX RECEIVE					
Q1,01	PCWP					
7	PX SEND BROADCAST	:TQ10000				
Q1,00	P->P	BROADCAST				
8	PX BLOCK ITERATOR		1	13	0 (0)	00:00:01
Q1,00	PCWC					
9	TABLE ACCESS FULL	D2_T2	1	13	0 (0)	00:00:01
Q1,00	PCWP					
10	PX BLOCK ITERATOR		1	13	2 (0)	00:00:01
Q1,01	PCWC					
* 11	TABLE ACCESS FULL	D2_T1	1	13	2 (0)	00:00:01
Q1,01 | PCWP | |

Predicate Information (identified by operation id):

 11 - filter("A"."UNIQUE1"="B"."UNIQUE1")

Note

 - dynamic sampling used for this statement

Example 9-7 To monitor disk reads and buffer gets.

SET AUTOTRACE TRACEONLY STATISTICS

The following shows typical results:

Statistics
--
 467 recursive calls
 27 db block gets
 147 consistent gets
 20 physical reads
 4548 redo size
 502 bytes sent via Oracle Net Services to client
 496 bytes received via Oracle Net Services from client
 2 Oracle Net Services roundtrips to/from client
 14 sorts (memory)
 0 sorts (disk)
 1 rows processed

If consistent gets or physical reads are high relative to the amount of data returned, it
indicates that the query is expensive and needs to be reviewed for optimization. For

Chapter 9
Tracing Parallel and Distributed Queries

9-7

example, if you are expecting less than 1,000 rows back and consistent gets is
1,000,000 and physical reads is 10,000, further optimization is needed.

Note:

You can also monitor disk reads and buffer gets using V$SQL or TKPROF.

9.4 Execution Plan Output in Earlier Databases
Execution Plan output from Oracle Database 9i Release 2 (9.2) or earlier is different.

Each line of the Execution Plan has a sequential line number. SQL*Plus also displays
the line number of the parent operation.

The Execution Plan consists of four columns displayed in the following order:

Column Name Description

ID_PLUS_EXP Shows the line number of each execution step.

PARENT_ID_PLUS_EXP Shows the relationship between each step and its parent.
This column is useful for large reports.

PLAN_PLUS_EXP Shows each step of the report.

OBJECT_NODE_PLUS_EXP Shows database links or parallel query servers used.

The format of the columns may be altered with the COLUMN command. For example,
to stop the PARENT_ID_PLUS_EXP column being displayed, enter

COLUMN PARENT_ID_PLUS_EXP NOPRINT

The Execution Plan output is generated using the EXPLAIN PLAN command.

When you trace a statement in a parallel or distributed query, the Execution Plan
shows the cost based optimizer estimates of the number of rows (the cardinality). In
general, the cost, cardinality and bytes at each node represent cumulative results. For
example, the cost of a join node accounts for not only the cost of completing the join
operations, but also the entire costs of accessing the relations in that join.

Lines marked with an asterisk (*) denote a parallel or remote operation. Each
operation is explained in the second part of the report. See Distributed Transactions
Concepts for more information on parallel and distributed operations.

The second section of this report consists of three columns displayed in the following
order

Column Name Description

ID_PLUS_EXP Shows the line number of each execution step.

OTHER_TAG_PLUS_EXP Describes the function of the SQL statement in the
OTHER_PLUS_EXP column.

OTHER_PLUS_EXP Shows the text of the query for the parallel server or remote
database.

Chapter 9
Execution Plan Output in Earlier Databases

9-8

The format of the columns may be altered with the COLUMN command.

9.5 About SQL*Plus Script Tuning
Most performance benefit comes from tuning SQL queries executed in a script. This is
done with tools like SQL*Plus's AUTOTRACE command. It involves restructuring
queries to make best use of the Oracle Database SQL optimizer. For information
about Tuning SQL statements, see the Oracle Database Performance Tuning Guide.

The performance gains made by tuning SQL*Plus-specific commands are smaller, but
could be important for some applications. The following system variables and
commands can influence SQL*Plus performance.

9.5.1 COLUMN NOPRINT
COLUMN NOPRINT turns off screen output and printing of the column heading and all
values selected for the column.

It is better to remove an unneeded column from a SELECT then it is to use COLUMN
NOPRINT to stop it displaying. Removing the column from the query means the SQL
engine does not need to process it, or need to transfer the column data back to
SQL*Plus.

9.5.2 SET APPINFO OFF
Sets automatic registering of scripts through the DBMS_APPLICATION_INFO
package. Setting APPINFO OFF prevents administrators monitoring the performance
and resource usage of scripts.

If many SQL scripts are being called, then turning APPINFO OFF stops internal
SQL*Plus calls to the database DBMS_APPLICATION_INFO package.

9.5.3 SET ARRAYSIZE
Sets the number of rows that SQL*Plus will fetch from the database at one time. Valid
values are 1 to 5000.

The effectiveness of setting ARRAYSIZE depends on how well Oracle Database fills
network packets and your network latency and throughput. In recent versions of
SQL*Plus and Oracle Database, ARRAYSIZE may have little effect. Overlarge sizes
can easily take more SQL*Plus memory which may decrease overall performance.

9.5.4 SET DEFINE OFF
SET DEFINE OFF disables the parsing of commands to replace substitution variables
with their values.

9.5.5 SET FLUSH OFF
SET FLUSH OFF enables the operating system to buffer output. ON disables buffering
and flushes output to the screen. Any benefit from setting FLUSH either ON or OFF
depends on your operating system and data. The gain may be marginal.

Chapter 9
About SQL*Plus Script Tuning

9-9

Use OFF only when you run a script that does not require user interaction and whose
output you do not need to see until the script finishes running.

9.5.6 SET LINESIZE
SET LINESIZE sets the total number of characters that SQL*Plus displays on one line
before beginning a new line.

Keep LINESIZE as small as possible to avoid extra memory allocations and memory
copying.

However, if LINESIZE is too small, columns that cannot fit next to each other are put
on separate lines. This may reduce performance significantly.

9.5.7 SET LONGCHUNKSIZE
SET LONGCHUNKSIZE sets the size of the increments SQL*Plus uses to retrieve a
BLOB, BFILE, CLOB, LONG, NCLOB or XMLType value.

Experiment with different sizes if LONGS or LOBs are being fetched.

9.5.8 SET PAGESIZE
Sets the number of lines on each page of output.

Increase PAGESIZE to avoid printing headings frequently, or set it to 0 to prevent
headings being displayed.

9.5.9 SET SERVEROUTPUT
SET SERVEROUTPUT OFF suppresses the display output
(DBMS_OUTPUT.PUT_LINE) of stored procedures or PL/SQL blocks in SQL*Plus.

Setting SERVEROUTPUT OFF stops internal SQL*Plus calls to the DBMS_OUTPUT
package done after user SQL statements.

9.5.10 SET SQLPROMPT
Sets the SQL*Plus command prompt.

Use the default prompt, "SQL> " to stop variable substitution occurring each time the
prompt is displayed.

9.5.11 SET TAB
Determines how SQL*Plus formats white space in terminal output.

Setting TAB ON causes multiple spaces to be compressed in terminal output. Unless
this significantly reduces the written data, the processing required may marginally
outweigh any benefit.

Chapter 9
About SQL*Plus Script Tuning

9-10

9.5.12 SET TERMOUT
SET TERMOUT OFF suppresses the display so that you can spool output from a
script without seeing it on the screen.

If both spooling to file and writing to terminal are not required, use SET TERMOUT
OFF in SQL scripts to disable terminal output.

9.5.13 SET TRIMOUT ON SET TRIMSPOOL ON
SET TRIMOUT ON or SET TRIMSPOOL ON removes trailing blanks at the end of
each displayed or spooled line.

Setting these variables ON can reduce the amount of data written. However, if
LINESIZE is optimal, it may be faster to set the variables OFF. The SQL*Plus output
line is blank filled throughout the query processing routines so removing the spaces
could take extra effort.

9.5.14 UNDEFINE
Deletes substitution variables that you defined either explicitly (with the DEFINE
command) or implicitly (with an argument to the START command or COLUMN
NEW_VAL|OLD_VAL).

Use the UNDEFINE command to remove unnecessary substitution variables. This can
reduce the time taken for any operation that uses '&', new_value or old_value
variables.

Chapter 9
About SQL*Plus Script Tuning

9-11

10
SQL*Plus Security

This chapter describes the available methods for controlling access to database
tables, and SQL*Plus commands. It covers the following topics:

• Disabling SQL*Plus_ SQL_ and PL/SQL Commands

• About Creating and Controlling Roles

• About Disabling Commands with SQLPLUS -RESTRICT

• About Program Argument Security

10.1 Disabling SQL*Plus, SQL, and PL/SQL Commands

Note:

Starting with Oracle Database 19c, the SQL*Plus table
PRODUCT_USER_PROFILE (PUP table) is desupported. Oracle
recommends that you protect data by using Oracle Database settings, so
that you ensure consistent security across all client applications.

To disable a SQL or SQL*Plus command for a given user, insert a row containing the
user's username in the Userid column, the command name in the Attribute column,
and DISABLED in the Char_Value column. The Scope, Numeric_Value, and
Date_Value columns should contain NULL. For example:

PRODUCT USERID ATTRIBUTE SCOPE NUMBERIC CHAR DATE LONG
 VALUE VALUE VALUE VALUE
------- ------ --------- ----- -------- ------ ----- -----
SQL*Plus HR HOST DISABLED
SQL*Plus % INSERT DISABLED
SQL*Plus % UPDATE DISABLED
SQL*Plus % DELETE DISABLED

To re-enable commands, delete the row containing the restriction.

SQL*Plus commands that can be disabled:

• ACCEPT

• DEFINE

• PASSWORD

• SHUTDOWN

• APPEND

• DEL

• PAUSE

10-1

• SPOOL

• ARCHIVE LOG

• DESCRIBE

• PRINT

• START (@, @@)

• ATTRIBUTE

• DISCONNECT

• PROMPT

• STARTUP

• BREAK

• EDIT

• RECOVER

• STORE

• BTITLE

• EXECUTE

• REMARK

• TIMING

• CHANGE

• EXIT/QUIT

• REPFOOTER

• TTITLE

• CLEAR

• GET

• REPHEADER

• UNDEFINE

• COLUMN

• HELP (?)

• RUN

• VARIABLE

• COMPUTE

• HOST

• SAVE

• WHENEVER OSERROR

• CONNECT

• INPUT

• SET

• WHENEVER SQLERROR

Chapter 10
Disabling SQL*Plus, SQL, and PL/SQL Commands

10-2

• COPY

• LIST (;)

• SHOW

• XQUERY

SQL commands that can be disabled:

• ALTER

• ANALYZE

• ASSOCIATE

• AUDIT

• CALL

• COMMENT

• COMMIT

• CREATE

• DELETE

• DISASSOCIATE

• DROP

• EXPLAIN

• FLASHBACK

• GRANT

• INSERT

• LOCK

• MERGE

• NOAUDIT

• PURGE

• RENAME

• REVOKE

• ROLLBACK

• SAVEPOINT

• SELECT

• SET CONSTRAINTS

• SET ROLE

• SET TRANSACTION

• TRUNCATE

• UPDATE

• VALIDATE

You can disable the following PL/SQL commands:

• BEGIN

Chapter 10
Disabling SQL*Plus, SQL, and PL/SQL Commands

10-3

• DECLARE

Note:

• Disabling HOST disables the operating system alias for HOST, such
as $ on Windows, and ! on UNIX.

• Disabling LIST disables ; and numbers (numbers entered to go to that
line in a script).

• You must disable HELP and ? separately to disable access to command-
line help.

• Disabling the SQL*Plus SET command also disables SQL SET
CONSTRAINTS, SET ROLE and SET TRANSACTION.

• Disabling SQL*Plus START also disables @ and @@.

• Disabling BEGIN and DECLARE does not prevent the use of SQL*Plus
EXECUTE to run PL/SQL. EXECUTE must be disabled separately.

• Disabling EXIT/QUIT is not recommended. If disabled, terminate a
command-line session by sending an EOF character such as Ctrl+D in
UNIX or Ctrl+Z in Windows. Otherwise, terminate a session by
terminating the SQL*Plus process. If disabled, the EXIT operation in
WHENEVER OSERROR and WHENEVER SQLERROR is also
disabled.

1. Log in as SYSTEM with the command

SQLPLUS SYSTEM

2. Insert a row into the PUP table with the command:

INSERT INTO PRODUCT_USER_PROFILE
VALUES ('SQL*Plus', 'HR', 'SELECT', NULL, NULL, 'DISABLED', NULL, NULL);

3. Connect as HR and try to SELECT something:

CONNECT HR
SELECT * FROM EMP_DETAILS_VIEW;

This command causes the following error message:

SP2-0544: Command SELECT disabled in Product User Profile

4. To delete this row and remove the restriction from the user HR, CONNECT again
as SYSTEM and enter:

DELETE FROM PRODUCT_USER_PROFILE WHERE USERID = 'HR';

10.2 About Creating and Controlling Roles
You can use SQL commands to create and control access to roles to provide security
for your database tables. By creating a role and then controlling who has access to it,
you can ensure that only certain users have access to particular database privileges.

Roles are created and used with the SQL CREATE, GRANT, and SET commands:

Chapter 10
About Creating and Controlling Roles

10-4

• To create a role, you use the CREATE command. You can create roles with or
without passwords.

• To grant access to roles, you use the GRANT command. In this way, you can
control who has access to the privileges associated with the role.

• To access roles, you use the SET ROLE command. If you created the role with a
password, the user must know the password in order to access the role.

10.2.1 About Disabling SET ROLE
From SQL*Plus, users can submit any SQL command. In certain situations, this can
cause security problems. Unless you take proper precautions, a user could use SET
ROLE to access privileges obtained through an application role. With these privileges,
they might issue SQL statements from SQL*Plus that could wrongly change database
tables.

To prevent application users from accessing application roles in SQL*Plus, you can
use the PUP table to disable the SET ROLE command. You also need to disable the
BEGIN and SQL*Plus EXECUTE commands to prevent application users setting
application roles through a PL/SQL block. This gives a SQL*Plus user only those
privileges associated with the roles enabled when they started SQL*Plus. For more
information about the creation and usage of user roles, see your Oracle Database
SQL Language Reference and Oracle Database Administrator's Guide.

10.2.2 About Disabling User Roles
To disable a role for a given user, insert a row in the PUP table containing the user's
username in the Userid column, "ROLES" in the Attribute column, and the role name in
the Char_Value column.

Note:

When you enter "PUBLIC" or "%" for the Userid column, you disable the role
for all users. You should only use "%" or "PUBLIC" for roles which are
granted to "PUBLIC". If you try to disable a role that has not been granted to
a user, none of the roles for that user are disabled.

The Scope, Numeric_Value, and Date_Value columns should contain NULL. For
example:

PRODUCT USERID ATTRIBUTE SCOPE NUMERIC CHAR DATE LONG
 VALUE VALUE VALUE VALUE
------- ------ --------- ----- -------- ------ ----- -----
SQL*Plus HR ROLES ROLE1
SQL*Plus PUBLIC ROLES ROLE2

During login, these table rows are translated into the command

SET ROLE ALL EXCEPT ROLE1, ROLE2

To ensure that the user does not use the SET ROLE command to change their roles
after login, you can disable the SET ROLE command.

To re-enable roles, delete the row containing the restriction.

Chapter 10
About Creating and Controlling Roles

10-5

See About Disabling SET ROLE for more information.

10.3 About Disabling Commands with SQLPLUS -
RESTRICT

The RESTRICT option enables you to disable certain commands that interact with the
operating system. However, commands disabled with the -RESTRICT option are
disabled even when no connection to a server exists, and remain disabled until
SQL*Plus terminates.

The following table shows which commands are disabled in each restriction level.

Command Level 1 Level 2 Level 3

EDIT disabled disabled disabled

GET disabled

HOST disabled disabled disabled

SAVE disabled disabled

SPOOL disabled disabled

START disabled

STORE disabled disabled

Note:

• Disabling HOST also disables your operating system's alias for HOST,
such as $ on Windows, and ! on UNIX.

• Disabling the SQL*Plus START command will also disable the SQL*Plus
@ and @@ commands.

For more information about the RESTRICT option, see the SQLPLUS RESTRICT
Option.

10.4 About Program Argument Security
Some operating systems allow any user to see what programs are being run. If the
display also shows command-line arguments, it may be possible to view the
usernames and passwords of other SQL*Plus users.

For example, on many UNIX or Linux systems the ps command shows program
arguments. To stop passwords being displayed depends on how you use SQL*Plus.

• To run SQL*Plus interactively, always wait for SQL*Plus to prompt for connection
information, particularly your password.

• To run a batch SQL script from a UNIX shell script, set environment variables
MYUSERNAME and MYPASSWORD to the appropriate values. Run a shell script
containing:

Chapter 10
About Disabling Commands with SQLPLUS -RESTRICT

10-6

sqlplus /nolog <<EOF
connect $MYUSERNAME/$MYPASSWORD
select ...
EOF

• To run a batch SQL script, hard code the username and password as the first line
of the SQL script. Then call the script with:

sqlplus @myscript.sql

When SQL*Plus is started like this, it uses the first line of the script as the username/
password@connection_identifier string.

Avoid storing your username and password in files or scripts. If you do store your
username and password in a file or script, ensure that the file or script is secured from
non-authorized access.

Chapter 10
About Program Argument Security

10-7

11
Database Administration with SQL*Plus

This chapter provides a brief overview of the database administration tools available in
SQL*Plus, and discusses the following topics:

• Overview

• Introduction to Database Startup and Shutdown

• Redo Log Files

• Database Recovery

This chapter is intended for use by database administrators. You must have database
administrator privileges to use this functionality.

For more information on database administration, see the Oracle Database Concepts
manual.

11.1 Overview
Special operations such as starting up or shutting down a database are performed by
a database administrator (DBA). The DBA has certain privileges that are not assigned
to normal users. The commands outlined in this chapter would normally be used by a
DBA.

For more information about security and roles in SQL*Plus, see SQL*Plus Security.

11.2 Introduction to Database Startup and Shutdown
An Oracle database may not always be available to all users. To open or close a
database, or to start up or shut down an instance, you must have DBA privileges or be
connected as SYSOPER or SYSDBA. Other users cannot change the current status of
an Oracle database.

11.2.1 Database Startup
To start a database:

1. Start an instance

An instance controls the background processes and the allocation of memory area
to access an Oracle database.

2. Mount the database

Mounting the database associates it with a previously started instance.

3. Open the database

Opening the database makes it available for normal database operations.

11-1

Example 11-1 Starting an Instance

To start an Oracle Database instance, without mounting the database, enter

STARTUP NOMOUNT

Example 11-2 Mounting the Database

To start an instance, mount the database, but leave the database closed, enter

STARTUP MOUNT

Example 11-3 Opening the Database

To start an instance using the Oracle Database Server parameter file
INITSALES.ORA, mount and open the database named SALES, and restrict access to
database administrators, enter

STARTUP OPEN sales PFILE=INITSALES.ORA RESTRICT

where SALES is the database name specified in the DB_NAME parameter in the
INITSALES.ORA parameter file.

For more information about database startup, see Starting Up and Shutting Down. For
more information about starting a database, see the STARTUP command.

11.2.2 PDB Startup

Note:

A multitenant container database is the only supported architecture in Oracle
Database 20c. While the documentation is being revised, legacy terminology
may persist. In most cases, "database" and "non-CDB" refer to a CDB or
PDB, depending on context. In some contexts, such as upgrades, "non-CDB"
refers to a non-CDB from a previous release.

A Pluggable Database (PDB) is a self-contained collection of schemas and schema
objects that exist inside a Consolidated Database.

To start a pluggable database:

1. Start SQL*Plus with the /NOLOG argument:

sqlplus /nolog

2. Issue a CONNECT command using easy connect or a net service name to connect to
the PDB.

3. Issue a STARTUP command.

Another way to open a pluggable database is to connect to the CDB and use the
following command:

ALTER PLUGGABLE DATABASE pdbname OPEN;

Chapter 11
Introduction to Database Startup and Shutdown

11-2

For more information about database startup, see Starting Up and Shutting Down. For
more information about starting a database, see the STARTUP command.

11.2.3 Database Shutdown
Shutting down a database involves three steps:

1. Closing the database

When a database is closed, all database and recovery data in the SGA are written
to the datafiles and redo log files, and all online datafiles are closed.

2. Dismounting the database

Dismounting the database disassociates the database from an instance and
closes the control files of the database.

3. Shutting down the instance

Shutting down an instance reclaims the SGA from memory and terminates the
background Oracle Database processes that constitute an Oracle Database
instance.

Example 11-4 Shutting Down the Database

To shut down the database normally after it has been opened and mounted, enter

SHUTDOWN

For more information about database shutdown, see Shutting Down a Database. For
information about stopping a database, see the SHUTDOWN command.

Database closed.
Database dismounted.
ORACLE instance shut down.

11.2.4 PDB Shutdown

Note:

A multitenant container database is the only supported architecture in Oracle
Database 20c. While the documentation is being revised, legacy terminology
may persist. In most cases, "database" and "non-CDB" refer to a CDB or
PDB, depending on context. In some contexts, such as upgrades, "non-CDB"
refers to a non-CDB from a previous release.

To shutdown a pluggable database (PDB):

1. Connect to the PDB with the required privileges.

2. Run the SHUTDOWN command.

Chapter 11
Introduction to Database Startup and Shutdown

11-3

Note:

• When the current container is a PDB, the SHUTDOWN command only
closes the PDB, not the CDB instance.

• There is no SHUTDOWN command for a PDB that is equivalent to SHUTDOWN
TRANSACTIONAL or SHUTDOWN ABORT for a non-CDB.

For more information about database startup, see the Oracle Database Administrator's
Guide guide. For more information about starting a database, see the STARTUP
command.

11.3 Redo Log Files
Every Oracle database has a set of two or more redo log files. The set of redo log files
for a database is collectively referred to as the database's redo log.

The redo log is used to record changes made to data. If, for example, there is a
database failure, the redo log is used to recover the database. To protect against a
failure involving the redo log itself, Oracle Database has a mirrored redo log so that
two or more copies of the redo log can be maintained on different disks.

11.3.1 ARCHIVELOG Mode
Operating a database in ARCHIVELOG mode enables the archiving of the online redo
log.

The SQL ALTER SYSTEM command enables a complete recovery from disk failure as
well as instance failure, because all changes made to the database are permanently
saved in an archived redo log.

For more information about redo log files and database archiving modes, see the
ARCHIVE LOG command.

To list the details of the current log file being archived, enter

ARCHIVE LOG LIST

Database log mode Archive Mode
Automatic archival Enabled
Archive destination /vobs/oracle/dbs/arch
Oldest online log sequence 221
Next log sequence to archive 222
Current log sequence 222

11.4 Database Recovery
If a damaged database is in ARCHIVELOG mode, it is a candidate for either complete
media recovery or incomplete media recovery operations. To begin media recovery
operations use the RECOVER command. For more information about recovering data,
see the RECOVER command.

Chapter 11
Redo Log Files

11-4

In order to begin recovery operations, you must have DBA privileges.

To recover the database up to a specified time using a control backup file, enter

RECOVER DATABASE UNTIL TIME '1998-11-23:12:47:30'-
USING BACKUP CONTROLFILE

To recover two offline tablespaces, enter

RECOVER TABLESPACE ts1, ts2

Make sure that the tablespaces you are interested in recovering have been taken
offline, before proceeding with recovery for those tablespaces.

Chapter 11
Database Recovery

11-5

12
SQL*Plus Globalization Support

Globalization support enables the storing, processing and retrieval of data in native
languages. The languages that can be stored in an Oracle database are encoded by
Oracle Database-supported character sets. Globalization support ensures that
database utilities, error messages, sort order, and date, time, monetary, numeric, and
calendar conventions adjust to the native language and locale.

Topics:

• About Configuring Globalization Support in Command-line SQL*Plus

• NLS_LANG Environment Variable

For more information on globalization support, see the Oracle Technology Network
globalization notes at http://www.oracle.com/technetwork/products/
globalization/

and see Overview of Globalization Support.

12.1 About Configuring Globalization Support in Command-
line SQL*Plus

SQL*Plus supports multiple languages through the NLS_LANG environment variable.
To display another language in SQL*Plus, before starting SQL*Plus you must
configure:

• NLS_LANG in the SQL*Plus client environment.

• The Oracle Database during installation.

12.1.1 SQL*Plus Client
The SQL*Plus client environment is configured by setting the NLS_LANG environment
variable which is read by SQL*Plus at startup.

12.1.2 Oracle Database
The Oracle Database environment is configured by creating the database with the
required character set.

12.2 NLS_LANG Environment Variable
The NLS_LANG environment variable has three components, each controlling a
subset of the globalization features.

Your operating system and keyboard must be able to support the character set you
have chosen. You may need to install additional support software. For more

12-1

http://www.oracle.com/technetwork/products/globalization/
http://www.oracle.com/technetwork/products/globalization/

information about NLS_LANG, and software support, see Setting Up a Globalization
Support Environment.

Setting up locale specific behavior on the SQL*Plus client is achieved with the use of
NLS parameters. These parameters may be specified in a number of ways, including
as an initialization parameter on the server. For settings that control the behavior of
the server, see NLS Database Parameters.

NLS_LANG has the syntax:

NLS_LANG = language_territory.charset

where language specifies the conventions to use for Oracle Database messages,
sorting order, day and month names. For example, to receive messages in Japanese,
set language to JAPANESE. If language is not set, it defaults to AMERICAN.

where territory specifies the convention for default dates, and for monetary, and
numeric formats. For example to use the Japanese territory format, set territory to
JAPAN. If territory is not set, the default value is derived from the language value, and
so is set to AMERICA.

where, in SQL*Plus command-line, charset specifies the character set encoding used
by SQL*Plus for data processing, and is generally suited to that of the users terminal.
Illogical combinations can be set, but will not work. For example, Japanese cannot be
supported using a Western European character set such as:

NLS_LANG=JAPANESE_JAPAN.WE8DEC

However, Japanese could be supported with the Unicode character set. For example:

NLS_LANG=JAPANESE_JAPAN.UTF8

12.2.1 Viewing NLS_LANG Settings
You can view the NLS_LANG setting by entering the SELECT command:

SELECT * FROM NLS_SESSION_PARAMETERS;

The NLS_TERRITORY and NLS_LANGUAGE values correspond to the language and
territory components of the NLS_LANG variable.

You can also obtain a list of valid values for the NLS_SORT, NLS_LANGUAGE,
NLS_TERRITORY and NLS_CHARACTERSET by querying the NLS dynamic
performance view table V$NLS_VALID_VALUES.

12.3 Setting NLS_LANG
You can set the NLS_LANG environment variable to control globalization features.

Example 12-1 Configuring Japanese Support in SQL*Plus on Windows

1. Ensure you have exited your current SQL*Plus session.

2. Open System from Start > Settings > Control Panel.

3. Click the Advanced tab and select Environment Variables.

4. Create a new environment variable, NLS_LANG, with a value of
Japanese_Japan.JA16SJIS.

Chapter 12
Setting NLS_LANG

12-2

5. You may need to restart Windows for this setting to take effect.

Example 12-2 Configuring Japanese Support in SQL*Plus on UNIX

1. Ensure you have exited your current SQL*Plus session.

2. Set the NLS_LANG variable using either set or setenv depending on the UNIX
shell you are using. For example, in csh, you would enter:

setenv NLS_LANG Japanese_Japan.UTF8

or

setenv NLS_LANG Japanese_Japan.JA16SJIS

or

setenv NLS_LANG Japanese_Japan.JA16EUC

The locale setting of your UNIX terminal determines the exact value of the
NLS_LANG parameter. For more information on the NLS_LANG setting, see
Specifying the Value of NLS_LANG.

Example 12-3 Configuring Japanese Support in Oracle Database

To store data in the Japanese character set using UTF-8 character encoding, ensure
that the Oracle database has been created with the AL32UTF8 character set. See
your Oracle Database Installation Guide for information about creating your database
in a character set other than US7ASCII.

Chapter 12
Setting NLS_LANG

12-3

Part III
SQL*Plus Reference

Part III contains the SQL*Plus command reference, and the list of SQL*Plus error
messages.

Part III contains the following chapters:

• SQL*Plus Command Reference

• SQL*Plus Error Messages

13
SQL*Plus Command Reference

This chapter contains descriptions of the SQL*Plus commands listed alphabetically.
Each description contains the following parts:

Section Description

Syntax Shows how to enter the command and provides a brief description
of the basic uses of the command.

Terms Describes the function of each term or clause appearing in the
syntax.

Usage Provides additional information on uses of the command and on
how the command works.

Examples Gives one or more examples of the command.

You can continue a long SQL*Plus command by typing a hyphen at the end of the line
and pressing Return. If you wish, you can type a space before typing the hyphen.
SQL*Plus displays a right angle-bracket (>) as a prompt for each additional line.

You do not need to end a SQL*Plus command with a semicolon. When you finish
entering the command, you can press Return. If you wish, however, you can enter a
semicolon at the end of a SQL*Plus command.

13.1 SQL*Plus Command Summary

Command Description

@ (at sign) Runs SQL*Plus statements in the specified script. The script can be
called from the local file system or from a web server.

@@ (double at sign) Runs a script. This command is similar to the @ (at sign) command
It is useful for running nested scripts because it looks for the
specified script in the same path as the calling script.

/ (slash) Executes the SQL command or PL/SQL block.

ACCEPT Reads a line of input and stores it in a given substitution variable.

APPEND Adds specified text to the end of the current line in the buffer.

ARCHIVE LOG Displays information about redo log files.

ATTRIBUTE Specifies display characteristics for a given attribute of an Object
Type column, and lists the current display characteristics for a single
attribute or all attributes.

BREAK Specifies where and how formatting will change in a report, or lists
the current break definition.

13-1

Command Description

BTITLE Places and formats a specified title at the bottom of each report
page, or lists the current BTITLE definition.

CHANGE Changes text on the current line in the buffer.

CLEAR Resets or erases the current clause or setting for the specified
option, such as BREAKS or COLUMNS.

COLUMN Specifies display characteristics for a given column, or lists the
current display characteristics for a single column or for all columns.

COMPUTE Calculates and prints summary lines, using various standard
computations, on subsets of selected rows, or lists all COMPUTE
definitions.

CONNECT Connects a given user to Oracle Database.

COPY Copies results from a query to a table in the same or another
database.

DEFINE Specifies a substitution variable and assigns it a CHAR value, or
lists the value and variable type of a single variable or all variables.

DEL Deletes one more lines of the buffer.

DESCRIBE Lists the column definitions for the specified table, view, or synonym
or the specifications for the specified function procedure.

DISCONNECT Commits pending changes to the database and logs the current user
off Oracle Database, but does not exit SQL*Plus.

EDIT Invokes an operating system text editor on the contents of the
specified file or on the contents of the buffer.

EXECUTE Executes a single PL/SQL statement.

EXIT Terminates SQL*Plus and returns control to the operating system.

GET Loads an operating system file into the buffer.

HELP Accesses the SQL*Plus command-line help system.

HISTORY Recalls the history of commands, SQL*Plus commands, and SQL or
PL/SQL statements issued in the current SQL*Plus session.

HOST Executes an operating system command without leaving SQL*Plus.

INPUT Adds one or more new lines after the current line in the buffer.

LIST Lists one or more lines of the buffer.

PASSWORD Enables a password to be changed without echoing the password
on an input device.

Chapter 13
SQL*Plus Command Summary

13-2

Command Description

PAUSE Displays the specified text, then waits for the user to press Return.

PRINT Displays the current value of a bind variable.

PROMPT Sends the specified message to the user's screen.

EXIT Terminates SQL*Plus and returns control to the operating system
QUIT is identical to EXIT.

RECOVER Performs media recovery on one or more tablespaces, one or more
datafiles, or the entire database.

REMARK Begins a comment in a script.

REPFOOTER Places and formats a specified report footer at the bottom of each
report, or lists the current REPFOOTER definition.

REPHEADER Places and formats a specified report header at the top of each
report, or lists the current REPHEADER definition.

RUN Lists and runs the SQL command or PL/SQL block currently stored
in the SQL buffer.

SAVE Saves the contents of the buffer in an operating system file (a
script).

SET Sets a system variable to alter the SQL*Plus environment for your
current session.

SHOW Shows the value of a SQL*Plus system variable or the current
SQL*Plus environment.

SHUTDOWN Shuts down a currently running Oracle Database instance.

SPOOL Stores query results in an operating system file and, optionally,
sends the file to a printer.

START Runs the SQL statements in the specified script. The script can be
called from a local file system or a web server in SQL*Plus
command-line.

STARTUP Starts an Oracle Database instance and optionally mounts and
opens a database.

STORE Saves attributes of the current SQL*Plus environment in an
operating system script.

TIMING Records timing data for an elapsed period of time, lists the current
timer's title and timing data, or lists the number of active timers.

TTITLE Places and formats a specified title at the top of each report page, or
lists the current TTITLE definition.

UNDEFINE Deletes one or more substitution variables that you defined either
explicitly (with the DEFINE command) or implicitly (with an argument
to the START command).

Chapter 13
SQL*Plus Command Summary

13-3

Command Description

VARIABLE Declares a bind variable that can be referenced in PL/SQL, or lists
the current display characteristics for a single variable or all
variables.

WHENEVER OSERROR Exits SQL*Plus if an operating system command generates an error.

WHENEVER SQLERROR Exits SQL*Plus if a SQL command or PL/SQL block generates an
error.

XQUERY Runs an XQuery 1.0 statement.

13.2 @ (at sign)
Syntax

@{url | file_name[.ext] } [arg...]

Runs the SQL*Plus statements in the specified script. The script can be called from
the local file system or from a web server.

The @ command functions similarly to @@ and START.

Terms

url

Specifies the Uniform Resource Locator of a script to run on the specified web server.
SQL*Plus supports HTTP and FTP protocols, but not HTTPS. HTTP authentication in
the form http://username:password@machine_name.domain... is not supported in this
release.

file_name[.ext]

Represents the script you wish to run. If you omit ext, SQL*Plus assumes the default
command-file extension (normally SQL). For information on changing the default
extension, see SET SUF[FIX] {SQL | text}.

When you enter @file_name.ext, SQL*Plus searches for a file with that filename and
extension in the current default directory. If SQL*Plus does not find the file in the
current directory, it searches a system-dependent path to find it. Some operating
systems may not support the path search. See the platform-specific Oracle
documentation provided for your operating system for specific information related to
your operating system environment.

arg...

Represent data items you wish to pass to parameters in the script. If you enter one or
more arguments, SQL*Plus substitutes the values into the parameters (&1, &2, and so
forth) in the script. The first argument replaces each occurrence of &1, the second
replaces each occurrence of &2, and so forth.

The @ command defines the parameters with the values given by the arguments; if
you run the script again in this session, you can enter new arguments or omit the

Chapter 13
@ (at sign)

13-4

arguments to use the current values. For more information on using parameters, see
Using Substitution Variables.

Usage

All previous settings like COLUMN command settings stay in effect when the script
starts. If the script changes any setting, this new value stays in effect after the script
has finished.

You can include in a script any command you would normally enter interactively
(typically, SQL, SQL*Plus commands, or PL/SQL blocks).

If the START command is disabled (see Disabling SQL*Plus_ SQL_ and PL/SQL
Commands), this will also disable the @ command. See START for information on the
START command.

SQL*Plus removes the SQLTERMINATOR (a semicolon by default) before the @
command is issued. If you require a semicolon in your command, add a second
SQLTERMINATOR. See SET SQLT[ERMINATOR] {; | c | ON | OFF} for more
information.

Examples

To run a script named PRINTRPT with the extension SQL, enter

@PRINTRPT

To run a script named WKRPT with the extension QRY, enter

@WKRPT.QRY

You can run a script named YEAREND specified by a URL, and pass values to
variables referenced in YEAREND in the usual way:

@HTTP://machine_name.domain:port/YEAREND.SQL VAL1 VAL2
@FTP://machine_name.domain:port/YEAREND.SQL VAL1 VAL2

On a web server configured to serve SQL reports, you could request SQL*Plus to
execute a dynamic script with:

@HTTP://machine_name.domain:port/SCRIPTSERVER?ENDOFYEAR VAL1 VAL2

13.3 @@ (double at sign)
Syntax

@@{url | file_name[.ext] } [arg...]

Runs a script. This command is almost identical to the @ (at sign) command. When
running nested scripts it looks for nested scripts in the same path or url as the calling
script. The @@ command functions similarly to @ and START.

Terms

url

Specifies the Uniform Resource Locator of a script to run on the specified web server.
SQL*Plus supports HTTP and FTP protocols, but not HTTPS. HTTP authentication in

Chapter 13
@@ (double at sign)

13-5

the form http://username:password@machine_name.domain... is not supported in this
release.

file_name[.ext]

Represents the nested script you wish to run. If you omit ext, SQL*Plus assumes the
default command-file extension (normally SQL). For information on changing the
default extension, see SET SUF[FIX] {SQL | text}.

When you enter @@file_name.ext from within a script, SQL*Plus runs file_name.ext
from the same directory as the script.

When you enter @@file_name.ext interactively, SQL*Plus runs file_name.ext from the
current working directory or from the same url as the script from which it was called. If
SQL*Plus does not find the file, it searches a system-dependent path to find the file.
Some operating systems may not support the path search. See the platform-specific
Oracle documentation provided for your operating system for specific information
related to your operating system environment.

arg...

Represent data items you wish to pass to parameters in the script. If you enter one or
more arguments, SQL*Plus substitutes the values into the parameters (&1, &2, and so
forth) in the script. The first argument replaces each occurrence of &1, the second
replaces each occurrence of &2, and so forth.

The @@ command defines the parameters with the values given by the arguments. If
you run the script again in this session, you can enter new arguments or omit the
arguments to use the current values. For more information on using parameters, see
Using Substitution Variables.

Usage

All previous settings like COLUMN command settings stay in effect when the script
starts. If the script changes any setting, the new value stays in effect after the script
has finished.

You can include in a script any command you would normally enter interactively
(typically, SQL or SQL*Plus commands).

If the START command is disabled (see Disabling SQL*Plus_ SQL_ and PL/SQL
Commands), this will also disable the @@ command. For more information, see the
SPOOL command.

SQL*Plus removes the SQLTERMINATOR (a semicolon by default) before the @@
command is issued. A workaround for this is to add another SQLTERMINATOR. See
SET SQLT[ERMINATOR] {; | c | ON | OFF} for more information.

Examples

Suppose that you have the following script named PRINTRPT:

SELECT DEPARTMENT_ID, CITY FROM EMP_DETAILS_VIEW WHERE SALARY>12000;
@EMPRPT.SQL
@@ WKRPT.SQL

When you START PRINTRPT and it reaches the @ command, it looks for the script
named EMPRPT in the current working directory and runs it. When PRINTRPT
reaches the @@ command, it looks for the script named WKRPT in the same path as
PRINTRPT and runs it.

Chapter 13
@@ (double at sign)

13-6

Suppose that the same script PRINTRPT was located on a web server and you ran it
with START HTTP://machine_name.domain:port/PRINTRPT. When it reaches the @
command, it looks for the script named EMPRPT in the current working directory and
runs it. When PRINTRPT reaches the @@ command, it looks for the script named
WKRPT in the same url as PRINTRPT, HTTP://machine_name.domain:port/
WKRPT.SQL and runs it.

13.4 / (slash)
Syntax

/(slash)

Executes the most recently executed SQL command or PL/SQL block which is stored
in the SQL buffer.

Usage

You can enter a slash (/) at the command prompt or at a line number prompt of a
multi-line command.

The slash command functions similarly to RUN, but does not list the command.

Executing a SQL command or PL/SQL block using the slash command will not cause
the current line number in the SQL buffer to change unless the command in the buffer
contains an error. In that case, SQL*Plus changes the current line number to the
number of the line containing the error.

Examples

Type the following SQL script:

SELECT CITY, COUNTRY_NAMEFROM EMP_DETAILS_VIEWWHERE SALARY=12000;

Enter a slash (/) to re-execute the command in the buffer:

/

CITY COUNTRY_NAME
------------------------------ --
Seattle United States of America
Oxford United Kingdom
Seattle United States of America

13.5 ACCEPT
Syntax

ACC[EPT] variable [NUM[BER] | CHAR | DATE | BINARY_FLOAT | BINARY_DOUBLE] [FOR[MAT]
format] [DEF[AULT] default] [PROMPT text|NOPR[OMPT]] [HIDE]

Reads a line of input and stores it in a given substitution variable.

Terms

variable

Chapter 13
/ (slash)

13-7

Represents the name of the variable in which you wish to store a value. If variable
does not exist, SQL*Plus creates it.

NUM[BER]

Makes the variable a NUMBER datatype. If the reply does not match the datatype,
ACCEPT gives an error message and prompts again.

CHAR

Makes the variable a CHAR datatype. The maximum CHAR length is 240 bytes. If a
multi-byte character set is used, one CHAR may be more than one byte in size.

DATE

Makes reply a valid DATE format. If the reply is not a valid DATE format, ACCEPT
gives an error message and prompts again. The datatype is CHAR.

BINARY_FLOAT

Makes the variable a BINARY_FLOAT datatype. BINARY_FLOAT is a floating-point
number that conforms substantially with the Institute for Electrical and Electronics
Engineers (IEEE) Standard for Binary Floating-Point Arithmetic, IEEE Standard
754-1985.

BINARY_DOUBLE

Makes the variable a BINARY_DOUBLE datatype. BINARY_DOUBLE is a floating-
point number that conforms substantially with the Institute for Electrical and Electronics
Engineers (IEEE) Standard for Binary Floating-Point Arithmetic, IEEE Standard
754-1985.

FOR[MAT]

Specifies the input format for the reply. If the reply does not match the specified
format, ACCEPT gives an error message and prompts again. If an attempt is made to
enter more characters than are specified by the char format, an error message is given
and the value must be reentered. If an attempt is made to enter a greater number
precision than is specified by the number format, an error message is given and the
value must be reentered. The format element must be a text constant such as A10 or
9.999. See COLUMN FORMAT for a complete list of format elements.

Oracle Database date formats such as "dd/mm/yy" are valid when the datatype is
DATE. DATE without a specified format defaults to the NLS_DATE_FORMAT of the
current session. SeeFormat Models for information on Oracle Database date formats.

DEF[AULT]

Sets the default value if a reply is not given. The reply must be in the specified format
if defined.

PROMPT text

Displays text on-screen before accepting the value of variable from the user.

NOPR[OMPT]

Skips a line and waits for input without displaying a prompt.

HIDE

Chapter 13
ACCEPT

13-8

Suppresses the display as you type the reply.

To display or reference variables, use the DEFINE command. See the DEFINE
command for more information.

Examples

To display the prompt "Password: ", place the reply in a CHAR variable named PSWD,
and suppress the display, enter

ACCEPT pswd CHAR PROMPT 'Password: ' HIDE

To display the prompt "Enter weekly salary: " and place the reply in a NUMBER
variable named SALARY with a default of 000.0, enter

ACCEPT salary NUMBER FORMAT '999.99' DEFAULT '000.0' -
PROMPT 'Enter weekly salary: '

To display the prompt "Enter date hired: " and place the reply in a DATE variable,
HIRED, with the format "dd/mm/yyyy" and a default of "01/01/2003", enter

ACCEPT hired DATE FORMAT 'dd/mm/yyyy' DEFAULT '01/01/2003'-
PROMPT 'Enter date hired: '

To display the prompt "Enter employee lastname: " and place the reply in a CHAR
variable named LASTNAME, enter

ACCEPT lastname CHAR FORMAT 'A20' -
PROMPT 'Enter employee lastname: '

13.6 APPEND
Syntax

A[PPEND] text

where text represents the text to append.

Adds specified text to the end of the current line in the SQL buffer.

To separate text from the preceding characters with a space, enter two spaces
between APPEND and text.

To APPEND text that ends with a semicolon, end the command with two semicolons
(SQL*Plus interprets a single semicolon as an optional command terminator).

Examples

To append a comma delimiter, a space and the column name CITY to the first line of
the buffer, make that line the current line by listing the line as follows:

1

1* SELECT DEPARTMENT_ID

Now enter APPEND:

Chapter 13
APPEND

13-9

APPEND , CITY
1

1* SELECT DEPARTMENT_ID, CITY

To append a semicolon to the line, enter

APPEND ;;

SQL*Plus appends the first semicolon to the line and interprets the second as the
terminator for the APPEND command.

13.7 ARCHIVE LOG
Syntax

ARCHIVE LOG LIST

Displays information about redo log files.

Terms

LIST

Requests a display that shows the range of redo log files to be archived, the current
log file group's sequence number, and the current archive destination (specified by
either the optional command text or by the initialization parameter
LOG_ARCHIVE_DEST).

If you are using both ARCHIVELOG mode and automatic archiving, the display might
appear like:

ARCHIVE LOG LIST

Database log mode Archive Mode
Automatic archival Enabled
Archive destination /vobs/oracle/dbs/arch
Oldest online log sequence 221
Next log sequence to archive 222
Current log sequence 222

Since the log sequence number of the current log group and the next log group to
archive are the same, automatic archival has archived all log groups up to the current
one.

If you are using ARCHIVELOG but have disabled automatic archiving, the last three
lines might look like:

Oldest online log sequence 222
Next log sequence to archive 222
Current log sequence 225

If you are using NOARCHIVELOG mode, the "next log sequence to archive" line is
suppressed.

The log sequence increments every time the Log Writer begins to write to another redo
log file group; it does not indicate the number of logs being used. Every time an online
redo log file group is reused, the contents are assigned a new log sequence number.

Chapter 13
ARCHIVE LOG

13-10

Usage

You must be connected to an open Oracle database as SYSOPER, or SYSDBA. For
information about connecting to the database, see the CONNECT command.

For information about specifying archive destinations, see your platform-specific
Oracle Database documentation.

Note:

ARCHIVE LOG LIST only applies to the current instance. To START and
STOP archiving, use the SQL command ALTER SYSTEM. For more
information about using SQL commands, see the Oracle Database SQL
Language Reference.

13.8 ATTRIBUTE
Syntax

ATTR[IBUTE] [type_name.attribute_name [option ...]]

where option represents one of the following clauses:

ALI[AS] alias CLE[AR] FOR[MAT] format LIKE {type_name.attribute_name | alias} ON |
OFF

Specifies display characteristics for a given attribute of an Object Type column, such
as the format of NUMBER data. Columns and attributes should not have the same
names as they share a common namespace.

Also lists the current display characteristics for a single attribute or all attributes.

Enter ATTRIBUTE followed by type_name.attribute_name and no other clauses to list
the current display characteristics for only the specified attribute. Enter ATTRIBUTE
with no clauses to list all current attribute display characteristics.

Terms

type_name.attribute_name

Identifies the data item (typically the name of an attribute) within the set of attributes
for a given object of Object Type, type_name.

If you select objects of the same Object Type, an ATTRIBUTE command for that
type_name.attribute_name applies to all such objects you reference in that session.

ALI[AS] alias

Assigns a specified alias to a type_name.attribute_name, which can be used to refer
to the type_name.attribute_name in other ATTRIBUTE commands.

CLE[AR]

Resets the display characteristics for the attribute_name. The format specification
must be a text constant such as A10 or $9,999—not a variable.

Chapter 13
ATTRIBUTE

13-11

FOR[MAT] format

Specifies the display format of the column. The format specification must be a text
constant such as A10 or $9,999—not a variable.

LIKE {type_name.attribute_name | alias}

Copies the display characteristics of another attribute. LIKE copies only characteristics
not defined by another clause in the current ATTRIBUTE command.

ON | OFF

Controls the status of display characteristics for a column. OFF disables the
characteristics for an attribute without affecting the characteristics' definition. ON
reinstates the characteristics.

Usage

You can enter any number of ATTRIBUTE commands for one or more attributes. All
attribute characteristics set for each attribute remain in effect for the remainder of the
session, until you turn the attribute OFF, or until you use the CLEAR COLUMN
command. Thus, the ATTRIBUTE commands you enter can control an attribute's
display characteristics for multiple SQL SELECT commands.

When you enter multiple ATTRIBUTE commands for the same attribute, SQL*Plus
applies their clauses collectively. If several ATTRIBUTE commands apply the same
clause to the same attribute, the last one entered will control the output.

Examples

To make the LAST_NAME attribute of the Object Type EMPLOYEE_TYPE twenty
characters wide, enter

ATTRIBUTE EMPLOYEE_TYPE.LAST_NAME FORMAT A20

To format the SALARY attribute of the Object Type EMPLOYEE_TYPE so that it
shows millions of dollars, rounds to cents, uses commas to separate thousands, and
displays $0.00 when a value is zero, enter

ATTRIBUTE EMPLOYEE_TYPE.SALARY FORMAT $9,999,990.99

13.9 BREAK
Syntax

BRE[AK] [ON report_element [action [action]]] ...

where report_element has the syntax {column|expr|ROW|REPORT}

and action has the syntax [SKI[P] n|[SKI[P]] PAGE] [NODUP[LICATES]|
DUP[LICATES]]

Specifies where changes occur in a report and the formatting action to perform, such
as:

• suppressing display of duplicate values for a given column

• skipping a line each time a given column value changes

Chapter 13
BREAK

13-12

• printing computed figures each time a given column value changes or at the end of
the report.

See the COMPUTE command.

Enter BREAK with no clauses to list the current BREAK definition.

Terms

ON column [action [action]]

When you include actions, specifies actions for SQL*Plus to take whenever a break
occurs in the specified column (called the break column). (column cannot have a table
or view appended to it. To achieve this, you can alias the column in the SQL
statement.) A break is one of three events, a change in the value of a column or
expression, the output of a row, or the end of a report

When you omit actions, BREAK ON column suppresses printing of duplicate values in
column and marks a place in the report where SQL*Plus will perform the computation
you specify in a corresponding COMPUTE command.

You can specify ON column one or more times. If you specify multiple ON clauses, as
in

BREAK ON DEPARTMENT_ID SKIP PAGE ON JOB_ID -
SKIP 1 ON SALARY SKIP 1

the first ON clause represents the outermost break (in this case, ON
DEPARTMENT_ID) and the last ON clause represents the innermost break (in this
case, ON SALARY). SQL*Plus searches each row of output for the specified breaks,
starting with the outermost break and proceeding—in the order you enter the clauses
—to the innermost. In the example, SQL*Plus searches for a change in the value of
DEPARTMENT_ID, then JOB_ID, then SALARY.

Next, SQL*Plus executes actions beginning with the action specified for the innermost
break and proceeding in reverse order toward the outermost break (in this case, from
SKIP 1 for ON SALARY toward SKIP PAGE for ON DEPARTMENT_ID). SQL*Plus
executes each action up to and including the action specified for the first break
encountered in the initial search.

If, for example, in a given row the value of JOB_ID changes—but the values of
DEPARTMENT_ID and SALARY remain the same—SQL*Plus skips two lines before
printing the row (one as a result of SKIP 1 ON SALARY and one as a result of SKIP 1
ON JOB_ID).

Whenever you use ON column, you should also use an ORDER BY clause in the SQL
SELECT command. Typically, the columns used in the BREAK command should
appear in the same order in the ORDER BY clause (although all columns specified in
the ORDER BY clause need not appear in the BREAK command). This prevents
breaks from occurring at meaningless points in the report.

If the BREAK command specified earlier in this section is used, the following SELECT
command produces meaningful results:

SELECT DEPARTMENT_ID, JOB_ID, SALARY, LAST_NAME
FROM EMP_DETAILS_VIEW
WHERE SALARY > 12000
ORDER BY DEPARTMENT_ID, JOB_ID, SALARY, LAST_NAME;

Chapter 13
BREAK

13-13

All rows with the same DEPARTMENT_ID print together on one page, and within that
page all rows with the same JOB_ID print in groups. Within each group of jobs, those
jobs with the same SALARY print in groups. Breaks in LAST_NAME cause no action
because LAST_NAME does not appear in the BREAK command.

In BREAK commands, nulls are considered equal to each other, but not equal to
anything else. This is different to the treatment of nulls in WHERE clauses.

ON expr [action [action]]

When you include actions, specifies actions for SQL*Plus to take when the value of
the expression changes.

When you omit actions, BREAK ON expr suppresses printing of duplicate values of
expr and marks where SQL*Plus will perform the computation you specify in a
corresponding COMPUTE command.

You can use an expression involving one or more table columns or an alias assigned
to a report column in a SQL SELECT or SQL*Plus COLUMN command. If you use an
expression in a BREAK command, you must enter expr exactly as it appears in the
SELECT command. If the expression in the SELECT command is a+b, for example,
you cannot use b+a or (a+b) in a BREAK command to refer to the expression in the
SELECT command.

The information given for ON column also applies to ON expr.

ON ROW [action [action]]

When you include actions, specifies actions for SQL*Plus to take when a SQL
SELECT command returns a row. The ROW break becomes the innermost break
regardless of where you specify it in the BREAK command. You should always specify
an action when you BREAK on a row.

ON REPORT [action]

Marks a place in the report where SQL*Plus will perform the computation you specify
in a corresponding COMPUTE command. Use BREAK ON REPORT in conjunction
with COMPUTE to print grand totals or other "grand" computed values.

The REPORT break becomes the outermost break regardless of where you specify it
in the BREAK command.

Note that SQL*Plus will not skip a page at the end of a report, so you cannot use
BREAK ON REPORT SKIP PAGE.

SKI[P] n

Skips n lines before printing the row where the break occurred. BREAK SKIP n does
not work in SET MARKUP HTML ON mode unless PREFORMAT is SET ON.

[SKI[P]] PAGE

Skips the number of lines that are defined to be a page before printing the row where
the break occurred. The number of lines per page can be set with the PAGESIZE
clause of the SET command. Note that PAGESIZE only changes the number of lines
that SQL*Plus considers to be a page. Therefore, SKIP PAGE may not always cause
a physical page break, unless you have also specified NEWPAGE 0. Note also that if
there is a break after the last row of data to be printed in a report, SQL*Plus will not
skip the page.

Chapter 13
BREAK

13-14

NODUP[LICATES]

Prints blanks rather than the value of a break column when the value is a duplicate of
the column's value in the preceding row.

DUP[LICATES]

Prints the value of a break column in every selected row.

Enter BREAK with no clauses to list the current break definition.

Usage

Each new BREAK command you enter replaces the preceding one.

To remove the BREAK command, use CLEAR BREAKS.

Examples

To produce a report that prints duplicate job values, prints the average of SALARY,
and additionally prints the sum of SALARY, you could enter the following commands.
(The example selects departments 50 and 80 and the jobs of clerk and salesman
only.)

BREAK ON DEPARTMENT_ID ON JOB_ID DUPLICATES
COMPUTE SUM OF SALARY ON DEPARTMENT_ID
COMPUTE AVG OF SALARY ON JOB_ID
SELECT DEPARTMENT_ID, JOB_ID, LAST_NAME, SALARY
FROM EMP_DETAILS_VIEW
WHERE JOB_ID IN ('SH_CLERK', 'SA_MAN')
AND DEPARTMENT_ID IN (50, 80)
ORDER BY DEPARTMENT_ID, JOB_ID;

DEPARTMENT_ID JOB_ID LAST_NAME SALARY
------------- ---------- ------------------------- ----------
 50 SH_CLERK Taylor 3200
 SH_CLERK Fleaur 3100
 .
 .
 .
 SH_CLERK Gates 2900

DEPARTMENT_ID JOB_ID LAST_NAME SALARY
------------- ---------- ------------------------- ----------
 50 SH_CLERK Perkins 2500
 SH_CLERK Bell 4000
 .
 .
 .
 SH_CLERK Grant 2600
 ********** ----------
 avg 3215

DEPARTMENT_ID JOB_ID LAST_NAME SALARY
------------- ---------- ------------------------- ----------

************* ----------
sum 64300

Chapter 13
BREAK

13-15

 80 SA_MAN Russell 14000
 SA_MAN Partners 13500
 SA_MAN Errazuriz 12000
 SA_MAN Cambrault 11000
 SA_MAN Zlotkey 10500
 ********** ----------
 avg 12200

DEPARTMENT_ID JOB_ID LAST_NAME SALARY
------------- ---------- ------------------------- ----------

************* ----------
sum 61000

25 rows selected.

13.10 BTITLE
Syntax

BTI[TLE] [printspec [text | variable] ...] | [ON | OFF]

where printspec represents one or more of the following clauses used to place and
format the text:

BOLD

CE[NTER]

COL n

FORMAT text

LE[FT]

R[IGHT]

S[KIP] [n]

TAB n

Places and formats a specified title at the bottom of each report page, or lists the
current BTITLE definition.

Enter BTITLE with no clauses to list the current BTITLE definition. For a description of
the old form of BTITLE, see BTI[TLE] text (obsolete old form).

Terms

See the TTITLE command for information on terms and clauses in the BTITLE
command syntax.

Usage

If you do not enter a printspec clause before the first occurrence of text, BTITLE left
justifies the text. SQL*Plus interprets BTITLE in the new form if a valid printspec
clause (LEFT, SKIP, COL, and so on) immediately follows the command name.

Chapter 13
BTITLE

13-16

SQL*Plus substitution variables (& variables) are expanded before BTITLE is
executed. The resulting string is stored as the BTITLE text. During subsequent
execution for each page of results, the expanded value of a variable may itself be
interpreted as a variable with unexpected results.

You can avoid this double substitution in a BTITLE command by not using the & prefix
for variables that are to be substituted on each page of results. If you want to use a
substitution variable to insert unchanging text in a BTITLE, enclose it in quotes so that
it is only substituted once.

Examples

To set a bottom title with CORPORATE PLANNING DEPARTMENT on the left and a
date on the right, enter

BTITLE LEFT 'CORPORATE PLANNING DEPARTMENT' -
RIGHT '1 JAN 2001'

To set a bottom title with CONFIDENTIAL in column 50, followed by six spaces and a
date, enter

BTITLE COL 50 'CONFIDENTIAL'
TAB 6
'1 JAN 2001'

13.11 CHANGE
Syntax

C[HANGE] sepchar old [sepchar [new [sepchar]]]

Changes the first occurrence of the specified text on the current line in the buffer.

Terms

sepchar

Represents any non-alphanumeric character such as "/" or "!". Use a sepchar that
does not appear in old or new.

old

Represents the text you wish to change. CHANGE ignores case in searching for old.
For example,

CHANGE /aq/aw

finds the first occurrence of "aq", "AQ", "aQ", or "Aq" and changes it to "aw". SQL*Plus
inserts the new text exactly as you specify it.

If old is prefixed with "...", it matches everything up to and including the first occurrence
of old. If it is suffixed with "...", it matches the first occurrence of old and everything that
follows on that line. If it contains an embedded "...", it matches everything from the
preceding part of old through the following part of old.

new

Chapter 13
CHANGE

13-17

Represents the text with which you wish to replace old. If you omit new and, optionally,
the second and third sepchars, CHANGE deletes old from the current line of the
buffer.

Usage

CHANGE changes the first occurrence of the existing specified text on the current line
of the buffer to the new specified text. The current line is marked with an asterisk (*) in
the LIST output.

You can also use CHANGE to modify a line in the buffer that has generated an Oracle
Database error. SQL*Plus sets the buffer's current line to the line containing the error
so that you can make modifications.

To reenter an entire line, you can type the line number followed by the new contents of
the line. If you specify a line number larger than the number of lines in the buffer and
follow the number with text, SQL*Plus adds the text in a new line at the end of the
buffer. If you specify zero ("0") for the line number and follow the zero with text,
SQL*Plus inserts the line at the beginning of the buffer (that line becomes line 1).

Examples

Enter 3 so the current line of the buffer contains the following text:

3

3* WHERE JOB_ID IS IN ('CLERK', 'SA_MAN')

Enter the following command:

CHANGE /CLERK/SH_CLERK/

The text in the buffer changes as follows:

3* WHERE JOB_ID IS IN ('SH_CLERK', 'SA_MAN')

Or enter the following command:

CHANGE /'CLERK',... /'SH_CLERK'/

The original line changes to

3* WHERE JOB_ID IS IN ('SH_CLERK')

Or enter the following command:

CHANGE /(...)/('SA_MAN')/

The original line changes to

3* WHERE JOB_ID IS IN ('SA_MAN')

You can replace the contents of an entire line using the line number. This entry

3 WHERE JOB_ID IS IN ('SH_CLERK')

Chapter 13
CHANGE

13-18

causes the second line of the buffer to be replaced with

WHERE JOB_ID IS IN ('SH_CLERK')

Note that entering a line number followed by a string will replace the line regardless of
what text follows the line number. For example,

2 CHANGE/OLD/NEW/

will change the second line of the buffer to be

2* C/OLD/NEW/

13.12 CLEAR
Syntax

CL[EAR] option ...

where option represents one of the following clauses:

BRE[AKS] BUFF[ER] COL[UMNS] COMP[UTES] SCR[EEN] SQL TIMI[NG]

Resets or erases the current value or setting for the specified option.

Terms

BRE[AKS]

Removes the break definition set by the BREAK command.

BUFF[ER]

Clears text from the buffer. CLEAR BUFFER has the same effect as CLEAR SQL,
unless you are using multiple buffers.

See SET BUF[FER] {buffer|SQL} (obsolete) for more information about the obsolete
form of this command.

COL[UMNS]

Resets column display attributes set by the COLUMN command to default settings for
all columns. To reset display attributes for a single column, use the CLEAR clause of
the COLUMN command. CLEAR COLUMNS also clears the ATTRIBUTEs for that
column.

COMP[UTES]

Removes all COMPUTE definitions set by the COMPUTE command.

SCR[EEN]

Clears your screen.

SQL

Clears the text from SQL buffer. CLEAR SQL has the same effect as CLEAR
BUFFER, unless you are using multiple buffers.

Chapter 13
CLEAR

13-19

See SET BUF[FER] {buffer|SQL} (obsolete) for more information about the obsolete
form of this command.

TIMI[NG]

Deletes all timers created by the TIMING command.

Examples

To clear breaks, enter

CLEAR BREAKS

To clear column definitions, enter

CLEAR COLUMNS

13.13 COLUMN
Syntax

COL[UMN] [{column | expr} [option ...]]

where option represents one of the following clauses:

ALI[AS] alias CLE[AR] ENTMAP {ON | OFF} FOLD_A[FTER] FOLD_B[EFORE] FOR[MAT] format
HEA[DING] text JUS[TIFY] {L[EFT] | C[ENTER] | R[IGHT]} LIKE {expr | alias} NEWL[INE]
NEW_V[ALUE] variable NOPRI[NT] | PRI[NT] NUL[L] text OLD_V[ALUE] variable ON | OFF
WRA[PPED] | WOR[D_WRAPPED] | TRU[NCATED]

Specifies display attributes for a given column, such as

• text for the column heading

• alignment of the column heading

• format for NUMBER data

• wrapping of column data

Also lists the current display attributes for a single column or all columns.

Enter COLUMN followed by column or expr and no other clauses to list the current
display attributes for only the specified column or expression. Enter COLUMN with no
clauses to list all current column display attributes.

Terms

{column | expr}

Identifies the data item (typically, the name of a column) in a SQL SELECT command
to which the column command refers. If you use an expression in a COLUMN
command, you must enter expr exactly as it appears in the SELECT command. If the
expression in the SELECT command is a+b, for example, you cannot use b+a or (a+b)
in a COLUMN command to refer to the expression in the SELECT command.

If you select columns with the same name from different tables, a COLUMN command
for that column name will apply to both columns. That is, a COLUMN command for the
column LAST_NAME applies to all columns named LAST_NAME that you reference in
this session. COLUMN ignores table name prefixes in SELECT commands. Also,
spaces are ignored unless the name is placed in double quotes.

Chapter 13
COLUMN

13-20

To format the columns differently, assign a unique alias to each column within the
SELECT command itself (do not use the ALIAS clause of the COLUMN command)
and enter a COLUMN command for each column's alias.

ALI[AS] alias

Assigns a specified alias to a column, which can be used to refer to the column in
BREAK, COMPUTE, and other COLUMN commands.

CLE[AR]

Resets the display attributes for the column to default values.

To reset the attributes for all columns, use the CLEAR COLUMNS command. CLEAR
COLUMNS also clears the ATTRIBUTEs for that column.

ENTMAP {ON | OFF}

Enables entity mapping to be turned on or off for selected columns in HTML output.
This feature enables you to include, for example, HTML hyperlinks in a column of data,
while still mapping entities in other columns of the same report. By turning entity
mapping off for a column containing HTML hyperlinks, the HTML anchor tag
delimiters, <, >, " and &, are correctly interpreted in the report. Otherwise they would
be replaced with their respective entities, <, >, " and &, preventing web
browsers from correctly interpreting the HTML.

Entities in the column heading and any COMPUTE labels or output appearing in the
column are mapped or not mapped according to the value of ENTMAP for the column.

The default setting for COLUMN ENTMAP is the current setting of the MARKUP HTML
ENTMAP option.

For more information about the MARKUP HTML ENTMAP option, see SET MARKUP
Options.

FOLD_A[FTER]

Inserts a carriage return after the column heading and after each row in the column.
SQL*Plus does not insert an extra carriage return after the last column in the SELECT
list. FOLD_A[FTER] does not work in SET MARKUP HTML ON mode unless
PREFORMAT is set ON.

FOLD_B[EFORE]

Inserts a carriage return before the column heading and before each row of the
column. SQL*Plus does not insert an extra carriage return before the first column in
the SELECT list. FOLD_A[FTER] does not work in SET MARKUP HTML ON mode
unless PREFORMAT is set ON.

FOR[MAT] format

Specifies the display format of the column. The format specification must be a text
constant such as A10 or $9,999.

Character Columns

The default width of CHAR, NCHAR, VARCHAR2 (VARCHAR) and NVARCHAR2
(NCHAR VARYING) columns is the width of the column in the database. SQL*Plus
formats these datatypes left-justified. If a value does not fit within the column width,

Chapter 13
COLUMN

13-21

SQL*Plus wraps or truncates the character string depending on the setting of SET
WRAP.

A LONG, BLOB, BFILE, CLOB, NCLOB XMLType or JSON column's width defaults to
the value of SET LONGCHUNKSIZE or SET LONG, whichever one is smaller.

To change the width of a datatype to n, use FORMAT An. (A stands for alphabetic.) If
you specify a width shorter than the column heading, SQL*Plus truncates the heading.

SQL*Plus truncates or wraps XMLType columns after 2000 bytes. To avoid this you
need to set an explicit COLUMN format for the XMLType column. A COLUMN format
can be up to a maximum of 60000 per row.

DATE Columns

The default width and format of unformatted DATE columns in SQL*Plus is derived
from the NLS_DATE_FORMAT parameter. The NLS_DATE_FORMAT setting is
determined by the NLS territory parameter. For example, the default format for the
NLS territory, America, is DD-Mon-RR, and the default width is A9. The NLS
parameters may be set in your database parameter file, in environment variables or an
equivalent platform-specific mechanism. They may also be specified for each session
with the ALTER SESSION command. For more information about DATE formats, and
about NLS parameters, see the Oracle Database SQL Language Reference.

You can change the format of any DATE column using the SQL function TO_CHAR in
your SQL SELECT statement. You may also wish to use an explicit COLUMN
FORMAT command to adjust the column width.

When you use SQL functions like TO_CHAR, Oracle Database automatically enables
a very wide column. The default column width may also depend on the character sets
in use in SQL*Plus and in the database. To maximize script portability if multiple
characters sets are used, Oracle Database recommends using COLUMN FORMAT for
each column selected.

To change the width of a DATE column to n, use the COLUMN command with
FORMAT An. If you specify a width shorter than the column heading, the heading is
truncated.

NUMBER Columns

For numeric columns, COLUMN FORMAT settings take precedence over SET
NUMFORMAT settings, which take precedence over SET NUMWIDTH settings.

See SET NUMF[ORMAT] format and SET NUM[WIDTH] {10 | n}.

To change a NUMBER column's width, use FORMAT followed by an element as
specified in Table 13-1.

Table 13-1 Number Formats

Element Examples Description

, (comma)
9,999

Displays a comma in the specified position.

. (period)
99.99

Displays a period (decimal point) to separate the integral and
fractional parts of a number.

$
$9999

Displays a leading dollar sign.

Chapter 13
COLUMN

13-22

Table 13-1 (Cont.) Number Formats

Element Examples Description

0
0999
9990

Displays leading zeros Displays trailing zeros.

9
9999

Displays a value with the number of digits specified by the number of
9s. Value has a leading space if positive, a leading minus sign if
negative. Blanks are displayed for leading zeroes. A zero (0) is
displayed for a value of zero.

B
B9999

Displays blanks for the integer part of a fixed-point number when the
integer part is zero, regardless of zeros in the format model.

C
C999

Displays the ISO currency symbol in the specified position.

D
99D99

Displays the decimal character to separate the integral and fractional
parts of a number.

EEEE
9.999EEEE

Displays value in scientific notation (format must contain exactly four
"E"s).

G
9G999

Displays the group separator in the specified positions in the integral
part of a number.

L
L999

Displays the local currency symbol in the specified position.

MI
9999MI

Displays a trailing minus sign after a negative value. Display a trailing
space after a positive value.

PR
9999PR

Displays a negative value in <angle brackets>. Displays a positive
value with a leading and trailing space.

RN rn
RN
rn

Displays uppercase Roman numerals. Displays lowercase Roman
numerals. Value can be an integer between 1 and 3999.

S
S9999
9999S

Displays a leading minus or plus sign. Displays a trailing minus or
plus sign.

TM
TM

Displays the smallest number of decimal characters possible. The
default is TM9. Fixed notation is used for output up to 64 characters,
scientific notation for more than 64 characters. Cannot precede TM
with any other element. TM can only be followed by a single 9 or E

U
U9999

Displays the dual currency symbol in the specified position.

V
999V99

Displays value multiplied by 10n, where n is the number of 9's after
the V.

X
XXXX
xxxx

Displays the hexadecimal value for the rounded value of the
specified number of digits.

The MI and PR format elements can only appear in the last position of a number
format model. The S format element can only appear in the first or last position.

Chapter 13
COLUMN

13-23

If a number format model does not contain the MI, S or PR format elements, negative
return values automatically contain a leading negative sign and positive values
automatically contain a leading space.

A number format model can contain only a single decimal character (D) or period (.),
but it can contain multiple group separators (G) or commas (,). A group separator or
comma cannot appear to the right of a decimal character or period in a number format
model.

SQL*Plus formats NUMBER data right-justified. A NUMBER column's width equals the
width of the heading or the width of the FORMAT plus one space for the sign,
whichever is greater. If you do not explicitly use COLUMN FORMAT or SET
NUMFORMAT, then the column's width will always be at least the value of SET
NUMWIDTH.

SQL*Plus may round your NUMBER data to fit your format or field width.

If a value cannot fit in the column, SQL*Plus displays pound signs (#) instead of the
number.

If a positive value is extremely large and a numeric overflow occurs when rounding a
number, then the infinity sign (~) replaces the value. Likewise, if a negative value is
extremely small and a numeric overflow occurs when rounding a number, then the
negative infinity sign replaces the value (-~).

HEA[DING] text

Defines a column heading. If you do not use a HEADING clause, the column's heading
defaults to column or expr. If text contains blanks or punctuation characters, you must
enclose it with single or double quotes. Each occurrence of the HEADSEP character
(by default, "|") begins a new line.

For example,

COLUMN LAST_NAME HEADING 'Employee |Name'

would produce a two-line column heading.

See SET HEADS[EP] { | c | ON | OFF} for information on changing the HEADSEP
character.

JUS[TIFY] {L[EFT] | C[ENTER] | R[IGHT]}

Aligns the heading. If you do not use a JUSTIFY clause, headings for NUMBER
columns default to RIGHT and headings for other column types default to LEFT.

LIKE {expr | alias}

Copies the display attributes of another column or expression (whose attributes you
have already defined with another COLUMN command). LIKE copies only attributes
not defined by another clause in the current COLUMN command.

NEWL[INE]

Starts a new line before displaying the column's value. NEWLINE has the same effect
as FOLD_BEFORE. NEWL[INE] does not work in SET MARKUP HTML ON mode
unless PREFORMAT is SET ON.

NEW_V[ALUE] variable

Chapter 13
COLUMN

13-24

Specifies a variable to hold a column value. You can reference the variable in TTITLE
commands. Use NEW_VALUE to display column values or the date in the top title.
You must include the column in a BREAK command with the SKIP PAGE action. The
variable name cannot contain a pound sign (#).

NEW_VALUE is useful for master/detail reports in which there is a new master record
for each page. For master/detail reporting, you must also include the column in the
ORDER BY clause. See the example at the end of this command description.

Variables specified with NEW_V[ALUE] are expanded before TTITLE is executed. The
resulting string is stored as the TTITLE text. During subsequent execution for each
page of the report, the expanded value of a variable may itself be interpreted as a
variable with unexpected results.

You can avoid this double substitution in a TTITLE command by not using the & prefix
for NEW_V[ALUE] variables that are to be substituted on each page of the report. If
you want to use a substitution variable to insert unchanging text in a TTITLE, enclose
it in quotes so that it is only substituted once.

For information on displaying a column value in the bottom title, see OLD_V[ALUE]
variable below. For more information on referencing variables in titles, see the TTITLE
command. For information on formatting and valid format models, see FOR[MAT]
format above.

NOPRI[NT] | PRI[NT]

Controls the printing of the column (the column heading and all the selected values).
NOPRINT turns off the screen output and printing of the column. PRINT turns the
printing of the column ON.

NUL[L] text

Controls the text SQL*Plus displays for null values in the given column. The default is
a white space. SET NULL controls the text displayed for all null values for all columns,
unless overridden for a specific column by the NULL clause of the COLUMN
command. When a NULL value is selected, a variable's type always becomes CHAR
so the SET NULL text can be stored in it.

OLD_V[ALUE] variable

Specifies a variable to hold a column value. You can reference the variable in BTITLE
commands. Use OLD_VALUE to display column values in the bottom title. You must
include the column in a BREAK command with the SKIP PAGE action.

OLD_VALUE is useful for master/detail reports in which there is a new master record
for each page. For master/detail reporting, you must also include the column in the
ORDER BY clause.

Variables specified with OLD_V[ALUE] are expanded before BTITLE is executed. The
resulting string is stored as the BTITLE text. During subsequent execution for each
page of the report, the expanded value of a variable may itself be interpreted as a
variable with unexpected results.

You can avoid this double substitution in a BTITLE command by not using the & prefix
for OLD_V[ALUE] variables that are to be substituted on each page of the report. If
you want to use a substitution variable to insert unchanging text in a BTITLE, enclose
it in quotes so that it is only substituted once.

Chapter 13
COLUMN

13-25

For information on displaying a column value in the top title, see NEW_V[ALUE]
variable. For more information on referencing variables in titles, see the TTITLE
command.

ON | OFF

Controls the status of display attributes for a column. OFF disables the attributes for a
column without affecting the attributes' definition. ON reinstates the attributes.

WRA[PPED] | WOR[D_WRAPPED] | TRU[NCATED]

Specifies how SQL*Plus will treat a datatype or DATE string that is too wide for a
column. WRAPPED wraps the string within the column bounds, beginning new lines
when required. When WORD_WRAP is enabled, SQL*Plus left justifies each new line,
skipping all leading whitespace (for example, returns, newline characters, tabs and
spaces), including embedded newline characters. Embedded whitespace not on a line
boundary is not skipped. TRUNCATED truncates the string at the end of the first line
of display.

NCLOB, BLOB, BFILE or multibyte CLOB columns cannot be formatted with the
WORD_WRAPPED option. If you format an NCLOB, BLOB, BFILE or multibyte CLOB
column with COLUMN WORD_WRAPPED, the column data behaves as though
COLUMN WRAPPED was applied instead.

Usage

The COLUMN commands you enter can control a column's display attributes for
multiple SQL SELECT commands.

You can enter any number of COLUMN commands for one or more columns. All
column attributes set for each column remain in effect for the remainder of the session,
until you turn the column OFF, or until you use the CLEAR COLUMN command.

When you enter multiple COLUMN commands for the same column, SQL*Plus applies
their clauses collectively. If several COLUMN commands apply the same clause to the
same column, the last one entered will control the output.

Examples

To make the LAST_NAME column 20 characters wide and display EMPLOYEE NAME
on two lines as the column heading, enter

COLUMN LAST_NAME FORMAT A20 HEADING 'EMPLOYEE|NAME'

To format the SALARY column so that it shows millions of dollars, rounds to cents,
uses commas to separate thousands, and displays $0.00 when a value is zero, enter

COLUMN SALARY FORMAT $9,999,990.99

To assign the alias NET to a column containing a long expression, to display the result
in a dollar format, and to display <NULL> for null values, you might enter

COLUMN SALARY+COMMISSION_PCT+BONUS-EXPENSES-INS-TAX ALIAS NET
COLUMN NET FORMAT $9,999,999.99 NULL '<NULL>'

Note that the example divides this column specification into two commands. The first
defines the alias NET, and the second uses NET to define the format.

Chapter 13
COLUMN

13-26

Also note that in the first command you must enter the expression exactly as you enter
it in the SELECT command. Otherwise, SQL*Plus cannot match the COLUMN
command to the appropriate column.

To wrap long values in a column named REMARKS, you can enter

COLUMN REMARKS FORMAT A20 WRAP

CUSTOMER DATE QUANTITY REMARKS
---------- --------- -------- --------------------
123 25-AUG-2001 144 This order must be s
 hipped by air freigh
 t to ORD

If you replace WRAP with WORD_WRAP, REMARKS looks like this:

CUSTOMER DATE QUANTITY REMARKS
---------- --------- -------- ---------------------
123 25-AUG-2001 144 This order must be
 shipped by air freight
 to ORD

If you specify TRUNCATE, REMARKS looks like this:

CUSTOMER DATE QUANTITY REMARKS
---------- --------- -------- --------------------
123 25-AUG-2001 144 This order must be s

To print the current date and the name of each job in the top title, enter the following.
Use the EMPLOYEES table of the HR schema instead of EMP_DETAILS_VIEW.

For details on creating a date variable, see About Displaying the Current Date in Titles.

Your two page report would look similar to the following report, with "Job Report"
centered within your current linesize:

COLUMN JOB_ID NOPRINT NEW_VALUE JOBVAR
COLUMN TODAY NOPRINT NEW_VALUE DATEVAR
BREAK ON JOB_ID SKIP PAGE ON TODAY
TTITLE CENTER 'Job Report' RIGHT DATEVAR SKIP 2 -
LEFT 'Job: ' JOBVAR SKIP 2
SELECT TO_CHAR(SYSDATE, 'MM/DD/YYYY') TODAY,
LAST_NAME, JOB_ID, MANAGER_ID, HIRE_DATE, SALARY, DEPARTMENT_ID
FROM EMPLOYEES WHERE JOB_ID IN ('MK_MAN', 'SA_MAN')
ORDER BY JOB_ID, LAST_NAME;

To change the default format of DATE columns to 'YYYY-MM-DD', you can enter

ALTER SESSION SET NLS_DATE_FORMAT = 'YYYY-MM-DD';

Session altered.

To display the change, enter a SELECT statement, such as:

Chapter 13
COLUMN

13-27

SELECT HIRE_DATEFROM EMPLOYEESWHERE EMPLOYEE_ID = 206;

 Job Report
04/19/01

Job: SA_MAN

HIRE_DATE

1994-06-07

SeeALTER SESSION for information on the ALTER SESSION command.

13.14 COMPUTE
Syntax

COMP[UTE] [function [LAB[EL] text] ... OF {expr | column | alias} ... ON
{expr | column | alias | REPORT | ROW} ...]

In combination with the BREAK command, calculates and prints summary lines, using
various standard computations on subsets of selected rows. It also lists all COMPUTE
definitions. For details on how to create summaries, see About Clarifying Your
Report with Spacing and Summary Lines.

Terms

function ...

Represents one of the functions listed in Table 13-2. If you specify more than one
function, use spaces to separate the functions.

COMPUTE command functions are always executed in the sequence AVG, COUNT,
MINIMUM, MAXIMUM, NUMBER, SUM, STD, VARIANCE, regardless of their order in
the COMPUTE command.

Table 13-2 COMPUTE Functions

Function Computes Applies to Datatypes

AVG
Average of non-null values NUMBER

COU[NT]
Count of non-null values all types

MIN[IMUM]
Minimum value NUMBER, CHAR, NCHAR,

VARCHAR2 (VARCHAR),
NVARCHAR2 (NCHAR
VARYING)

MAX[IMUM]
Maximum value NUMBER, CHAR, NCHAR,

VARCHAR2 (VARCHAR),
NVARCHAR2 (NCHAR
VARYING)

Chapter 13
COMPUTE

13-28

Table 13-2 (Cont.) COMPUTE Functions

Function Computes Applies to Datatypes

NUM[BER]
Count of rows all types

SUM
Sum of non-null values NUMBER

STD
Standard deviation of non-null values NUMBER

VAR[IANCE]
Variance of non-null values NUMBER

LAB[EL] text

Defines the label to be printed for the computed value. If no LABEL clause is used,
text defaults to the unabbreviated function keyword. You must place single quotes
around text containing spaces or punctuation. The label prints left justified and
truncates to the column width or linesize, whichever is smaller. The maximum label
length is 500 characters.

The label for the computed value appears in the break column specified. To suppress
the label, use the NOPRINT option of the COLUMN command on the break column.

If you repeat a function in a COMPUTE command, SQL*Plus issues a warning and
uses the first occurrence of the function.

With ON REPORT and ON ROW computations, the label appears in the first column
listed in the SELECT statement. The label can be suppressed by using a NOPRINT
column first in the SELECT statement. When you compute a function of the first
column in the SELECT statement ON REPORT or ON ROW, then the computed value
appears in the first column and the label is not displayed. To see the label, select a
dummy column first in the SELECT list.

OF {expr | column | alias} ...

In the OF clause, you can refer to an expression or function reference in the SELECT
statement by placing the expression or function reference in double quotes. Column
names and aliases do not need quotes.

ON {expr | column | alias | REPORT | ROW} ...

If multiple COMPUTE commands reference the same column in the ON clause, only
the last COMPUTE command applies.

To reference a SQL SELECT expression or function reference in an ON clause, place
the expression or function reference in quotes. Column names and aliases do not
need quotes.

Enter COMPUTE without clauses to list all COMPUTE definitions.

Usage

In order for the computations to occur, the following conditions must all be true:

Chapter 13
COMPUTE

13-29

• One or more of the expressions, columns, or column aliases you reference in the
OF clause must also be in the SELECT command.

• The expression, column, or column alias you reference in the ON clause must
occur in the SELECT command and in the most recent BREAK command.

• If you reference either ROW or REPORT in the ON clause, also reference ROW or
REPORT in the most recent BREAK command.

To remove all COMPUTE definitions, use the CLEAR COMPUTES command.

Note that if you use the NOPRINT option for the column on which the COMPUTE is
being performed, the COMPUTE result is also suppressed.

Examples

To subtotal the salary for the "account manager", AC_MGR, and "salesman",
SA_MAN, job classifications with a compute label of "TOTAL", enter

BREAK ON JOB_ID SKIP 1;
COMPUTE SUM LABEL 'TOTAL' OF SALARY ON JOB_ID;
SELECT JOB_ID, LAST_NAME, SALARY
FROM EMP_DETAILS_VIEW
WHERE JOB_ID IN ('AC_MGR', 'SA_MAN')
ORDER BY JOB_ID, SALARY;

JOB_ID LAST_NAME SALARY
---------- ------------------------- ----------
AC_MGR Higgins 12000
********** ----------
TOTAL 12000
SA_MAN Zlotkey 10500
 Cambrault 11000
 Errazuriz 12000
 Partners 13500
 Russell 14000
********** ----------
TOTAL 61000

6 rows selected.

To calculate the total of salaries greater than 12,000 on a report, enter

COMPUTE SUM OF SALARY ON REPORT
BREAK ON REPORT
COLUMN DUMMY HEADING ''
SELECT ' ' DUMMY, SALARY, EMPLOYEE_ID
FROM EMP_DETAILS_VIEW
WHERE SALARY > 12000
ORDER BY SALARY;

 SALARY EMPLOYEE_ID
--- ---------- -----------
 13000 201
 13500 146
 14000 145
 17000 101
 17000 102

Chapter 13
COMPUTE

13-30

 24000 100

sum 98500

6 rows selected.

To calculate the average and maximum salary for the executive and accounting
departments, enter

BREAK ON DEPARTMENT_NAME SKIP 1
COMPUTE AVG LABEL 'Dept Average' -
 MAX LABEL 'Dept Maximum' -
 OF SALARY ON DEPARTMENT_NAME
SELECT DEPARTMENT_NAME, LAST_NAME, SALARY
FROM EMP_DETAILS_VIEW
WHERE DEPARTMENT_NAME IN ('Executive', 'Accounting')
ORDER BY DEPARTMENT_NAME;

DEPARTMENT_NAME LAST_NAME SALARY
------------------------------ ------------------------- ----------
Accounting Higgins 12000
 Gietz 8300
****************************** ----------
Dept Average 10150
Dept Maximum 12000

Executive King 24000
 Kochhar 17000
 De Haan 17000
****************************** ----------
Dept Average 19333.3333
Dept Maximum 24000

To sum salaries for departments <= 20 without printing the compute label, enter

COLUMN DUMMY NOPRINT
COMPUTE SUM OF SALARY ON DUMMY
BREAK ON DUMMY SKIP 1
SELECT DEPARTMENT_ID DUMMY, DEPARTMENT_ID, LAST_NAME, SALARY
FROM EMP_DETAILS_VIEW
WHERE DEPARTMENT_ID <= 20
ORDER BY DEPARTMENT_ID;

DEPARTMENT_ID LAST_NAME SALARY
------------- ------------------------- ----------
 10 Whalen 4400

 4400

 20 Hartstein 13000
 20 Fay 6000

 19000

To total the salary at the end of the report without printing the compute label, enter

Chapter 13
COMPUTE

13-31

COLUMN DUMMY NOPRINT
COMPUTE SUM OF SALARY ON DUMMY
BREAK ON DUMMY
SELECT NULL DUMMY, DEPARTMENT_ID, LAST_NAME, SALARY
FROM EMP_DETAILS_VIEW
WHERE DEPARTMENT_ID <= 30
ORDER BY DEPARTMENT_ID;

DEPARTMENT_ID LAST_NAME SALARY
------------- ------------------------- ----------
 10 Whalen 4400
 20 Hartstein 13000
 20 Fay 6000
 30 Raphaely 11000
 30 Khoo 3100
 30 Baida 2900
 30 Tobias 2800
 30 Himuro 2600
 30 Colmenares 2500

 48300

9 rows selected.

13.15 CONNECT

Note:

A multitenant container database is the only supported architecture in Oracle
Database 20c. While the documentation is being revised, legacy terminology
may persist. In most cases, "database" and "non-CDB" refer to a CDB or
PDB, depending on context. In some contexts, such as upgrades, "non-CDB"
refers to a non-CDB from a previous release.

Syntax

CONN[ECT] [{logon | / | proxy} [AS {SYSASM |SYSBACKUP |SYSDBA |SYSDG |SYSOPER |
SYSRAC | SYSKM}] [edition=value]]

where logon has the syntax:

username[/password] [@connect_identifier]

where proxy has the syntax:

proxyuser[username] [/password] [@connect_identifier]

Chapter 13
CONNECT

13-32

Note:

The brackets around username in proxy are required syntax, not an
indication of an optional term. For example, to connect to scott through
proxy user hr with password welcome1.

CONNECT hr[scott]/welcome1

Connects a given username to the Oracle Database. When you run a CONNECT
command, the site profile, glogin.sql, and the user profile, login.sql, are executed.

CONNECT does not reprompt for username or password if the initial connection does
not succeed.

WARNING:

Including your password in plain text is a security risk. You can avoid this risk
by omitting the password, and entering it only when the system prompts for
it.

To connect to a database using an enterprise user proxy, you must first configure the
proxy. For information about configuring an enterprise user proxy, see the Oracle
Database Enterprise User Security Administrator's Guide.

Terms

username[/password]

The username and password you use to connect to Oracle Database. If you omit
username and password, SQL*Plus prompts you for them. If you enter a slash (/) or
enter Return or click Execute when prompted for username, SQL*Plus logs you in
using a default logon. See / (slash) for more information.

If you omit only password, SQL*Plus prompts you for password. When prompting,
SQL*Plus does not display password on your terminal screen.

See the PASSWORD command for information about changing your password in
SQL*Plus.

connect_identifier

An Oracle Net connect identifier. The exact syntax depends on the Oracle Net
configuration. For more information, refer to the Oracle Net manual or contact your
DBA. SQL*Plus does not prompt for a service name, but uses your default database if
you do not include a connect identifier.

A connect_identifier is also used to connect to a pluggable database (PDB). See
Oracle Database Administrator's Guide

edition=value

The value for the Oracle Session Edition. An edition enables two or more versions of
an object in a database. It provides a staging area where changed objects can be

Chapter 13
CONNECT

13-33

loaded into the database, compiled, and executed during uptime. This is particularly
useful to reduce downtime associated with patching an application. edition=value
overrides any edition value specified in the ORA_EDITION environment variable. For
more detailed information, see Oracle Database Administrator's Guide.

/ (slash)

Represents a default logon using operating system authentication. You cannot enter a
connect_identifier if you use a default logon. In a default logon, SQL*Plus typically
attempts to log you in using the username OPS$name, where name is your operating
system username. See the Oracle Database Administrator's Guide for information
about operating system authentication.

In SQL*Plus command line, where applications use password credentials to connect to
databases, it is possible to store the credentials in a client-side Oracle wallet. When
you configure a client to use the Oracle wallet, applications can use the following
syntax to connect to databases that use password authentication:

CONNECT /@database_alias

For information about configuring your client to use secure external password store
and for information about managing credentials in it, see the Oracle Database Security
Guide.

AS {SYSASM |SYSBACKUP |SYSDBA |SYSDG |SYSOPER |SYSRAC |SYSKM}

The AS clause enables privileged connections by users who have been granted that
system privileges. You can use any one of these privileged connections with the
default logon, /.

For information about system privileges, see the Oracle Database Administrator's
Guide.

Usage

CONNECT commits the current transaction to the database, disconnects the current
username from Oracle Database, and reconnects with the specified username.

If you log on or connect as a user whose account has expired, SQL*Plus prompts you
to change your password before you can connect.

If an account is locked, a message is displayed and connection into that account (as
that user) is not permitted until the account is unlocked by your DBA.

For more information about user account management, refer to the CREATE USER,
ALTER USER and the CREATE PROFILE commands in the Oracle Database SQL
Language Reference.

Examples

To connect across Oracle Net with username HR, to the database known by the
Oracle Net alias as FLEETDB, enter

CONNECT HR@FLEETDB

For more information about setting up your password file, refer to the Oracle Database
Administrator's Guide.

To connect to an instance on the current node as a privileged user named HR, enter

Chapter 13
CONNECT

13-34

CONNECT HR AS SYSDBA

To connect to an instance on the current node as a privileged default user, enter

CONNECT / AS SYSDBA

You can use the CONNECT command to connect to a CDB using easy connect or a
net service name.

This statement connects to the hr user using the hrapp service. The hrapp service
has a PDB property for the hrpdb PDB. This example assumes that the client is
configured to have a Net Service Name for the hrapp service.

CONNECT hr@hrapp

13.16 COPY
The COPY command is not being enhanced to handle datatypes or features
introduced with, or after Oracle8i. The COPY command is likely to be deprecated in a
future release.

For COPY command details and syntax, see SQL*Plus COPY Command.

13.17 DEFINE
Syntax

DEF[INE] [variable] | [variable = text]

Specifies a user or predefined variable and assigns a CHAR value to it, or lists the
value and variable type of a single variable or all variables.

Terms

variable

Represents the user or predefined variable whose value you wish to assign or list.

text

Represents the CHAR value you wish to assign to variable. Enclose text in single
quotes if it contains punctuation or blanks.

variable = text

Defines (names) a substitution variable and assigns it a CHAR value.

Enter DEFINE followed by variable to list the value and type of variable. Enter DEFINE
with no clauses to list the values and types of all substitution variables.

Usage

Defined variables retain their values until you:

• enter a new DEFINE command referencing the variable

• enter an UNDEFINE command referencing the variable

• enter an ACCEPT command referencing the variable

Chapter 13
COPY

13-35

• reference the variable in the NEW_VALUE or OLD_VALUE clause of a COLUMN
command and then reference the column in a SELECT command

• EXIT SQL*Plus

Whenever you run a stored query or script, SQL*Plus substitutes the value of variable
for each substitution variable referencing variable (in the form &variable or
&&variable). SQL*Plus will not prompt you for the value of variable in this session until
you UNDEFINE variable.

If the value of a defined variable extends over multiple lines (using the SQL*Plus
command continuation character), SQL*Plus replaces each continuation character and
carriage return with a space. For example, SQL*Plus interprets

DEFINE TEXT = 'ONE-
TWO-
THREE'

as

DEFINE TEXT = 'ONE TWO THREE'

You should avoid defining variables with names that may be identical to values that
you will pass to them, as unexpected results can occur. If a value supplied for a
defined variable matches a variable name, then the contents of the matching variable
are used instead of the supplied value.

Some variables are predefined when SQL*Plus starts. Enter DEFINE to see their
definitions.

Examples

To assign the value MANAGER to the variable POS, type:

DEFINE POS = MANAGER

If you execute a command containing a reference to &POS, SQL*Plus substitutes the
value MANAGER for &POS and will not prompt you for a POS value.

To assign the CHAR value 20 to the variable DEPARTMENT_ID, type:

DEFINE DEPARTMENT_ID = 20

Even though you enter the number 20, SQL*Plus assigns a CHAR value to
DEPARTMENT_ID consisting of two characters, 2 and 0.

To list the definition of DEPARTMENT_ID, enter

DEFINE DEPARTMENT_ID

DEFINE DEPARTMENT_ID = "20" (CHAR)

This result shows that the value of DEPARTMENT_ID is 20.

13.17.1 Predefined Variables
There are nine variables defined during SQL*Plus installation. These variables only
differ from user-defined variables by having predefined values.

Chapter 13
DEFINE

13-36

Table 13-3 Variables Predefined at SQL*Plus Installation

Variable Name Contains

_CONNECT_IDENTIFIER Connection identifier used to make connection, where available.

_DATE Current date, or a user defined fixed string.

_EDITOR Specifies the editor used by the EDIT command.

_O_VERSION Current version of the installed Oracle Database.

_O_RELEASE Full release number of the installed Oracle Database.

_PRIVILEGE Privilege level of the current connection.

_SQLPLUS_RELEASE Full release number of installed SQL*Plus component.

_USER User name used to make connection.

_SQL_ID sql_id of the SQL statement executed.

_CONNECT_IDENTIFIER

Contains the INSTANCE_NAME, SERVICE_NAME or ORACLE_SID from the connection
identifier. If a connection identifier is not supplied by the user during connection, the
_CONNECT_IDENTIFIER contains the ORACLE_SID.

_DATE

Contains either the current date as a dynamic variable, or a fixed string. The current
date is the default and is formatted using the value of NLS_DATE_FORMAT.

Because _DATE can be used as a normal substitution variable, users may put it in
TTITLE. If _DATE is dynamic and is used in TTITLE it will have all the normal variable
semantics. If it is used with an ampersand than the value will be set to the time when
the TTITLE command is executed. If it is used without an ampersand prefix, it will be
re-evaluated for each page. For long reports with _DATE in the TTITLE or with
multiple references to &_DATE, different times may be displayed for each occurrence
of the variable.

Users using _DATE in TTITLEs will almost certainly want to use an ampersand:
&_DATE, so that each page of the report has exactly the same timestamp. This is
especially true when the current date format contains a "seconds" component.

A DEFINE (with no arguments) or dereference using &_DATE will give the current
date.

The _DATE value can be UNDEFINED, or set to a fixed string with an explicit DEFINE
_DATE.

You can re-enable the default dynamic date behavior with:

DEFINE _DATE = "" (an empty string)

_DATE enables time values to be included in your SQL*Plus prompt.

_EDITOR

Specifies the default editor used by the EDIT command.

Chapter 13
DEFINE

13-37

During SQL*Plus installation on Windows operating systems, it is set to Notepad. On
UNIX operating systems, it is set to the value of the UNIX environment variable,
EDITOR, if it exists, otherwise it is set to Ed.

You can use the DEFINE command to redefine _EDITOR, to hold the name of your
preferred text editor. For example, to define the editor used by EDIT to be vi, enter the
following command:

DEFINE _EDITOR = vi

_O_VERSION

Contains the current version of the installed Oracle Database.

_O_RELEASE

Contains the full release number of the installed Oracle Database in the form:

1801000000

_PRIVILEGE

Contains a value indicating the privilege level of the current connection. It contains one
of the following values:

• AS SYSASM

• AS SYSBACKUP

• AS SYSDBA

• AS SYSDG

• AS SYSOPER

• AS SYSRAC

• An empty string for normal-user connections or when there is no connection.

AS SYSASM, AS SYSBACKUP, AS SYSDBA, AS SYSDG, AS SYSOPER and AS
SYSRAC are database administrator level privileges.

See Also:

GRANT for information on AS SYSDBA and AS SYSOPER privileges.

_SQLPLUS_RELEASE

Contains the full release number of the installed SQL*Plus component in the form:

1801000000

_USER

Contains the user name connected to the current connection.

_SQL_ID

Contains the sql_id for the currently executed SQL or PL/SQL statements.

Chapter 13
DEFINE

13-38

You can view the value of each of these variables with the DEFINE command.

These variables can be accessed and redefined like any other substitution variable.
They can be used in TTITLE, in '&' substitution variables, or in your SQL*Plus
command-line prompt.

You can use the DEFINE command to view the definitions of these nine predefined
variables in the same way as you view other DEFINE definitions. You can also use the
DEFINE command to redefine their values, or you can use the UNDEFINE command
to remove their definitions and make them unavailable.

To view a specific variable definition, enter

DEFINE variable

where variable is the name of the substitution variable whose definition you want to
view.

To view all predefined and user defined variable definitions, enter

DEFINE

All predefined and all user defined variable definitions are displayed.

You can use UNDEFINE to remove a substitution variable definition and make it
unavailable.

Examples of Use of Predefined Variables

To change your SQL*Plus prompt to display your connection identifier, enter:

SET SQLPROMPT '_CONNECT_IDENTIFIER > '

To view the predefined value of the _SQLPLUS_RELEASE substitution variable, enter

DEFINE _SQLPLUS_RELEASE

The value of the predefined variable _SQLPLUS_RELEASE is displayed.

DEFINE _SQLPLUS_RELEASE = "1801000000" (CHAR)

13.18 DEL
Syntax

DEL [n | n m | n * | n LAST | * | * n | * LAST | LAST]

Deletes one or more lines of the buffer.

Terms

Term Description

n
Deletes line n.

n m
Deletes lines n through m.

Chapter 13
DEL

13-39

Term Description

n *
Deletes line n through the current line.

n LAST
Deletes line n through the last line.

*
Deletes the current line.

* n
Deletes the current line through line n.

* LAST
Deletes the current line through the last line.

LAST
Deletes the last line.

Enter DEL with no clauses to delete the current line of the buffer.

Usage

DEL makes the following line of the buffer (if any) the current line. You can enter DEL
several times to delete several consecutive lines.

Note:

DEL is a SQL*Plus command and DELETE is a SQL command. For more
information about the SQL DELETE command, see DELETE.

Examples

Assume the SQL buffer contains the following query:

SELECT LAST_NAME, DEPARTMENT_ID
FROM EMP_DETAILS_VIEW
WHERE JOB_ID = 'SA_MAN'
ORDER BY DEPARTMENT_ID;

To make the line containing the WHERE clause the current line, you could enter

LIST 3

3* WHERE JOB_ID = 'SA_MAN'

followed by

DEL

The SQL buffer now contains the following lines:

SELECT LAST_NAME, DEPARTMENT_ID
FROM EMP_DETAILS_VIEW
ORDER BY DEPARTMENT_ID

Chapter 13
DEL

13-40

To delete the third line of the buffer, enter

DEL 3

The SQL buffer now contains the following lines:

SELECT LAST_NAME, DEPARTMENT_ID
FROM EMP_DETAILS_VIEW

13.19 DESCRIBE
Syntax

DESC[RIBE] {[schema.]object[@db_link]}

Lists the column definitions for the specified table, view or synonym, or the
specifications for the specified function or procedure.

Terms

schema

Represents the schema where the object or permission to describe the object resides.
If you omit schema and the object is not a public synonym, SQL*Plus assumes you
own object.

object

Represents the table, view, type, procedure, function, package or synonym you wish
to describe.

@db_link

Consists of the database link name corresponding to the database where object
exists. For more information on which privileges allow access to another table in a
different schema, refer to the Oracle Database SQL Language Reference.

Usage

The description for tables, views, types and synonyms contains the following
information:

• each column's name

• whether or not null values are allowed (NULL or NOT NULL) for each column

• datatype of columns, for example, CHAR, DATE, LONG, LONGRAW, NUMBER,
RAW, ROWID, VARCHAR2 (VARCHAR), or XMLType

• precision of columns (and scale, if any, for a numeric column)

When you do a DESCRIBE, VARCHAR columns are returned with a type of
VARCHAR2.

The DESCRIBE command enables you to describe objects recursively to the depth
level set in the SET DESCRIBE command. You can also display the line number and
indentation of the attribute or column name when an object contains multiple object
types. For more information, see the SET command.

Chapter 13
DESCRIBE

13-41

To control the width of the data displayed, use the SET LINESIZE command.

Columns output for the DESCRIBE command are typically allocated a proportion of
the linesize currently specified. Decreasing or increasing the linesize with the SET
LINESIZE command usually makes each column proportionally smaller or larger. This
may give unexpected text wrapping in your display. For more information, see the SET
command.

The description for functions and procedures contains the following information:

• the type of PL/SQL object (function or procedure)

• the name of the function or procedure

• the type of value returned (for functions)

• the argument names, types, whether input or output, and default values, if any

• the ENCRYPT keyword to indicate whether or not data in a column is encrypted

Examples

To describe the view EMP_DETAILS_VIEW, enter

DESCRIBE EMP_DETAILS_VIEW

 Name Null? Type
 --- -------- ----------------
 EMPLOYEE_ID NOT NULL NUMBER(6)
 JOB_ID NOT NULL VARCHAR2(10)
 MANAGER_ID NUMBER(6)
 DEPARTMENT_ID NUMBER(4)
 LOCATION_ID NUMBER(4)
 COUNTRY_ID CHAR(2)
 FIRST_NAME VARCHAR2(20)
 LAST_NAME NOT NULL VARCHAR2(25)
 SALARY NUMBER(8,2)
 COMMISSION_PCT NUMBER(2,2)
 DEPARTMENT_NAME NOT NULL VARCHAR2(30)
 JOB_TITLE NOT NULL VARCHAR2(35)
 CITY NOT NULL VARCHAR2(30)
 STATE_PROVINCE VARCHAR2(25)
 COUNTRY_NAME VARCHAR2(40)
 REGION_NAME VARCHAR2(25)

To describe a procedure called CUSTOMER_LOOKUP, enter

DESCRIBE customer_lookup

PROCEDURE customer_lookup
Argument Name Type In/Out Default?
---------------------- -------- -------- ---------
CUST_ID NUMBER IN
CUST_NAME VARCHAR2 OUT

To create and describe the package APACK that contains the procedures aproc and
bproc, enter

Chapter 13
DESCRIBE

13-42

CREATE PACKAGE apack AS
PROCEDURE aproc(P1 CHAR, P2 NUMBER);
PROCEDURE bproc(P1 CHAR, P2 NUMBER);
END apack;
/

Package created.

DESCRIBE apack

PROCEDURE APROC
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 P1 CHAR IN
 P2 NUMBER IN
PROCEDURE BPROC
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 P1 CHAR IN
 P2 NUMBER IN

To create and describe the object type ADDRESS that contains the attributes STREET
and CITY, enter

CREATE TYPE ADDRESS AS OBJECT
 (STREET VARCHAR2(20),
 CITY VARCHAR2(20)
);
/

Type created.

DESCRIBE address

 Name Null? Type
 --- -------- ----------------------
 STREET VARCHAR2(20)
 CITY VARCHAR2(20)

To create and describe the object type EMPLOYEE that contains the attributes
LAST_NAME, EMPADDR, JOB_ID and SALARY, enter

CREATE TYPE EMPLOYEE AS OBJECT
(LAST_NAME VARCHAR2(30),
EMPADDR ADDRESS,
JOB_ID VARCHAR2(20),
SALARY NUMBER(7,2)
);
/

Type created.

Chapter 13
DESCRIBE

13-43

DESCRIBE employee

 Name Null? Type
 --- -------- ----------------------
 LAST_NAME VARCHAR2(30)
 EMPADDR ADDRESS
 JOB_ID VARCHAR2(20)
 SALARY NUMBER(7,2)

To create and describe the object type addr_type as a table of the object type
ADDRESS, enter

CREATE TYPE addr_type IS TABLE OF ADDRESS;
/

Type created.

DESCRIBE addr_type

 addr_type TABLE OF ADDRESS
 Name Null? Type
 --- -------- ----------------------
 STREET VARCHAR2(20)
 CITY VARCHAR2(20)

To create and describe the object type addr_varray as a varray of the object type
ADDRESS, enter

CREATE TYPE addr_varray AS VARRAY(10) OF ADDRESS;
/

Type created.

DESCRIBE addr_varray

 addr_varray VARRAY(10) OF ADDRESS
 Name Null? Type
 --- -------- ----------------------
 STREET VARCHAR2(20)
 CITY VARCHAR2(20)

To create and describe the table department that contains the columns
DEPARTMENT_ID, PERSON and LOC, enter

CREATE TABLE department
(DEPARTMENT_ID NUMBER,
PERSON EMPLOYEE,
LOC NUMBER
);
/

Table created.

Chapter 13
DESCRIBE

13-44

DESCRIBE department

 Name Null? Type
 --- -------- ----------------------
 DEPARTMENT_ID NUMBER
 PERSON EMPLOYEE
 LOC NUMBER

To create and describe the object type rational that contains the attributes
NUMERATOR and DENOMINATOR, and the METHOD rational_order, enter

CREATE OR REPLACE TYPE rational AS OBJECT
(NUMERATOR NUMBER,
DENOMINATOR NUMBER,
MAP MEMBER FUNCTION rational_order -
RETURN DOUBLE PRECISION,
PRAGMA RESTRICT_REFERENCES
(rational_order, RNDS, WNDS, RNPS, WNPS));
/

CREATE OR REPLACE TYPE BODY rational AS OBJECT
MAP MEMBER FUNCTION rational_order -
RETURN DOUBLE PRECISION IS
BEGIN
 RETURN NUMERATOR/DENOMINATOR;
END;
END;
/
DESCRIBE rational

Name Null? Type
------------------------------ -------- ------------
NUMERATOR NUMBER
DENOMINATOR NUMBER

METHOD

MAP MEMBER FUNCTION RATIONAL_ORDER RETURNS NUMBER

To create a table which contains a column of XMLType, and describe it, enter

CREATE TABLE PROPERTY (Price NUMBER, Description SYS.XMLTYPE);

Table created

DESCRIBE PROPERTY;

Name Null? Type
--- -------- ----------------------
PRICE NUMBER
DESCRIPTION SYS.XMLTYPE

To format the DESCRIBE output use the SET command as follows:

Chapter 13
DESCRIBE

13-45

SET LINESIZE 80
SET DESCRIBE DEPTH 2
SET DESCRIBE INDENT ON
SET DESCRIBE LINE OFF

To display the settings for the object, use the SHOW command as follows:

SHOW DESCRIBE

DESCRIBE DEPTH 2 LINENUM OFF INDENT ON

DESCRIBE employee

 Name Null? Type
 --- -------- ----------------------
 FIRST_NAME VARCHAR2(30)
 EMPADDR ADDRESS
 STREET VARCHAR2(20)
 CITY VARCHAR2(20)
 JOB_ID VARCHAR2(20)
 SALARY NUMBER(7,2)

To create and describe the table des2_table which contains an encrypted column col2,
enter

CREATE TABLE des2_table (
col1 VARCHAR2(10),
col2 VARCHAR2(15) ENCRYPT,
col3 CHAR(5),
col4 CHAR(20));

Table created

DESCRIBE des2_table;

Name Null? Type
--- -------- ----------------------
COL1 VARCHAR2(10)
COL2 VARCHAR2(15) ENCRYPT
COL3 CHAR(5)
COL4 CHAR(20)

For more information on using the CREATE TYPE command, see your Oracle
Database SQL Language Reference.

For information about using the SET DESCRIBE and SHOW DESCRIBE commands,
see the SET and SHOW commands.

13.20 DISCONNECT
Syntax

DISC[ONNECT]

Chapter 13
DISCONNECT

13-46

Commits pending changes to the database and logs the current username out of
Oracle Database, but does not exit SQL*Plus.

Usage

Use DISCONNECT within a script to prevent user access to the database when you
want to log the user out of Oracle Database but have the user remain in SQL*Plus. In
SQL*Plus command-line, use EXIT or QUIT to log out of Oracle Database and return
control to your computer's operating system.

Examples

Your script might begin with a CONNECT command and end with a DISCONNECT, as
shown later.

CONNECT HR
SELECT LAST_NAME, DEPARTMENT_NAME FROM EMP_DETAILS_VIEW;
DISCONNECT
SET INSTANCE FIN2
CONNECT HR2

13.21 EDIT
Syntax

ED[IT] [file_name[.ext]]

where file_name[.ext] represents the file you wish to edit (typically a script).

Invokes an operating system text editor on the contents of the specified file or on the
contents of the buffer.

Enter EDIT with no filename to edit the contents of the SQL buffer with the operating
system text editor.

Usage

If you omit the file extension, SQL*Plus assumes the default command-file extension
(normally SQL). For information on changing the default extension, see the SUFFIX
variable of the SET command.

If you specify a filename, SQL*Plus searches for the file in the directory set by
ORACLE_PATH. If SQL*Plus cannot find the file in ORACLE_PATH, or if
ORACLE_PATH is not set, it searches for the file in the current working directory. If
SQL*Plus cannot find the file in either directory, it creates a file with the specified
name.

The substitution variable, _EDITOR, contains the name of the text editor invoked by
EDIT. You can change the text editor by changing the value of _EDITOR. For
information about changing the value of a substitution variable, see DEFINE. EDIT
attempts to run the default operating system editor if _EDITOR is undefined.

EDIT places the contents of the SQL buffer in a file named AFIEDT.BUF by default (in
your current working directory) and runs the text editor on the contents of the file. If the
file AFIEDT.BUF already exists, it is overwritten with the contents of the buffer. You
can change the default filename by using the SET EDITFILE command. For more
information about setting a default filename for the EDIT command, see the EDITFILE
variable of the SET command.

Chapter 13
EDIT

13-47

Note:

The default file, AFIEDT.BUF, may have a different name on some operating
systems.

If you do not specify a filename and the buffer is empty, EDIT returns an error
message.

In SQL*Plus 9.0 and earlier versions on Windows, the command EDIT * opened a
blank file after giving an invalid filename warning. In SQL*Plus 10 and later versions
on Windows, EDIT * gives an invalid filename warning and does not open a blank file.
To retain the SQL*Plus 9.0 behavior, enter the set command,

SET SQLPLUSCOMPATIBILITY 9.0

To leave the editing session and return to SQL*Plus, terminate the editing session in
the way customary for the text editor. When you leave the editor, SQL*Plus loads the
contents of the file into the buffer.

Note:

In Windows, if you use WordPad as your editor (_EDITOR=write.exe), the
buffer is not reloaded when you exit WordPad. In this case, use GET to
reload the buffer.

Examples

To edit the file REPORT with the extension SQL using your operating system text
editor, enter

EDIT REPORT

13.22 EXECUTE
Syntax

EXEC[UTE] statement

where statement represents a PL/SQL statement.

Executes a single PL/SQL statement. The EXECUTE command is often useful when
you want to execute a PL/SQL statement that references a stored procedure. For
more information on PL/SQL, see your Oracle Database PL/SQL Language
Reference.

Usage

If your EXECUTE command cannot fit on one line because of the PL/SQL statement,
use the SQL*Plus continuation character (a hyphen).

The length of the command and the PL/SQL statement cannot exceed the length
defined by SET LINESIZE.

Chapter 13
EXECUTE

13-48

You can suppress printing of the message "PL/SQL procedure successfully
completed" with SET FEEDBACK OFF.

Examples

If the variable :n has been defined with:

VARIABLE n NUMBER

The following EXECUTE command assigns a value to the bind variable n:

EXECUTE :n := 1

PL/SQL procedure successfully completed.

For information on how to create a bind variable, see the VARIABLE command.

13.23 EXIT
Syntax

{EXIT | QUIT} [SUCCESS | FAILURE | WARNING | n | variable | :BindVariable] [COMMIT |
ROLLBACK]

Commits or rolls back all pending changes, logs out of Oracle Database, terminates
SQL*Plus and returns control to the operating system.

Terms

{EXIT | QUIT}

Can be used interchangeably (QUIT is a synonym for EXIT).

SUCCESS

Exits normally.

FAILURE

Exits with a return code indicating failure.

WARNING

Exits with a return code indicating warning.

COMMIT

Saves pending changes to the database before exiting.

n

Represents an integer you specify as the return code.

variable

Represents a user-defined or system variable (but not a bind variable), such as
SQL.SQLCODE. EXIT variable exits with the value of variable as the return code.

:BindVariable

Chapter 13
EXIT

13-49

Represents a variable created in SQL*Plus with the VARIABLE command, and then
referenced in PL/SQL, or other subprograms. :BindVariable exits the subprogram and
returns you to SQL*Plus.

ROLLBACK

Executes a ROLLBACK statement and abandons pending changes to the database
before exiting.

EXIT with no clauses commits and exits with a value of SUCCESS.

Usage

EXIT enables you to specify an operating system return code. This enables you to run
SQL*Plus scripts in batch mode and to detect programmatically the occurrence of an
unexpected event. The manner of detection is operating-system specific.

The key words SUCCESS, WARNING, and FAILURE represent operating-system
dependent values. On some systems, WARNING and FAILURE may be
indistinguishable.

The range of operating system return codes is also restricted on some operating
systems. This limits the portability of EXIT n and EXIT variable between platforms. For
example, on UNIX there is only one byte of storage for return codes; therefore, the
range for return codes is limited to zero to 255.

If you make a syntax error in the EXIT options or use a non-numeric variable,
SQL*Plus performs an EXIT FAILURE COMMIT.

For information on exiting conditionally, see the WHENEVER SQLERROR and
WHENEVER OSERROR commands.

Examples

The following example commits all uncommitted transactions and returns the error
code of the last executed SQL command or PL/SQL block:

EXIT SQL.SQLCODE

13.24 GET
Syntax

GET [FILE] file_name[.ext] [LIST | NOLIST]

Loads an operating system file into the SQL buffer.

Terms

FILE

Keyword to specify that the following argument is the name of the script you want to
load. This optional keyword is usually omitted.

If you want to load a script with the name file, because it is a command keyword, you
need to put the name file in single quotes.

file_name[.ext]

Chapter 13
GET

13-50

Represents the file you wish to load (typically a script).

LIST

Lists the contents of the file after it is loaded. This is the default.

NOLIST

Suppresses the listing.

Usage

If you do not specify a file extension, SQL*Plus assumes the default command-file
extension (normally SQL). For information on changing the default extension, see SET
SUF[FIX] {SQL | text}.

If the filename you specify contains the word list or the word file, the name must be in
double quotes. SQL*Plus searches for the file in the current working directory.

The operating system file should contain a single SQL statement or PL/SQL block.
The statement should not be terminated with a semicolon. If a SQL*Plus command or
more than one SQL statement or PL/SQL block is loaded into the SQL buffer from an
operating system file, an error occurs when the RUN or slash (/) command is used to
execute the buffer.

The GET command can be used to load files created with the SAVE command. See
SAVE for more information.

Examples

To load a file called YEARENDRPT with the extension SQL into the buffer, enter

GET YEARENDRPT

13.25 HELP
Syntax

HELP | ? [topic]

where topic represents a SQL*Plus help topic, for example, COLUMN.

Accesses the SQL*Plus command-line help system. Enter HELP INDEX or ? INDEX
for a list of topics. You can view the Oracle Database Library at http://
www.oracle.com/technology/documentation/.

Enter HELP or ? without topic to get help on the help system.

Usage

You can only enter one topic after HELP. You can abbreviate the topic (for example,
COL for COLUMN). However, if you enter only an abbreviated topic and the
abbreviation is ambiguous, SQL*Plus displays help for all topics that match the
abbreviation. For example, if you enter

HELP EX

SQL*Plus displays the syntax for the EXECUTE command followed by the syntax for
the EXIT command.

Chapter 13
HELP

13-51

http://www.oracle.com/technology/documentation/
http://www.oracle.com/technology/documentation/

If you get a response indicating that help is not available, consult your database
administrator.

Examples

To see a list of SQL*Plus commands for which help is available, enter

HELP INDEX

or

? INDEX

To see a single column list of SQL*Plus commands for which help is available, enter

HELP TOPICS

13.26 HISTORY

Syntax

HIST[ORY] [[[N] {R[UN] | E[DIT] | D[ELETE]}] | CLEAR | LIST]

Enables users to run, edit, or delete previously used SQL*Plus, SQL, or PL/SQL
commands from the history list in the current session. You can enable or disable the
recording of history in the current SQL*Plus session by using the SET HISTORY
command.

The HISTORY command enables you to:

• List all entries in the command history list.

• Run an entry in the command history list.

• Edit an entry in the command history list.

• Delete an entry from the command history list.

• Clear all entries in the command history list.

Terms

HIST[ORY]

Lists all entries in the command history list.

N

Represents an entry in the command history list. An asterisk (*) indicates the last used
command in the command history list. If N is omitted, the RUN, EDIT OR DELETE
operation is executed in the last used command.

R[UN]

Enables you to execute entry N or the last used command from the command history
list.

E[DIT]

Chapter 13
HISTORY

13-52

Enables you to edit entry N or the last used command in the command history list,
using the default text editor. After you edit entry N in the command history list and
save the changes, a new entry is created at the end of the list. When the number of
entries in the command history list reaches the maximum limit, the oldest entry in the
list will be cleared to accommodate the new entry.

D[ELETE]

Enables you to delete entry N or the last used command from the command history
list. After you delete an entry from the history list, the list is reordered to reflect the
most recent changes.

CLEAR

Enables you to clear all entries in the history list. Once cleared, the history list cannot
be recovered.

LIST

Lists all entries in the history list. This is the same as using the HIST[ORY] command
by itself.

Usage

You can use the SQL*Plus DEFINE command to define the variable, _EDITOR, to
hold the name of your preferred text editor. For example, to define the editor used by
EDIT to be vi, enter the following command:

DEFINE _EDITOR = vi

EDIT attempts to run the default operating system editor if _EDITOR is undefined. See
the DEFINE command for more information.

Example 13-1 Examples

The following example executes the fifth entry in the history list:

SQL>history 5 run

The following example allows you to edit the third entry in the history list:

SQL>history 3 edit

The following example allows you to delete the second entry from the history list:

SQL>history 2 delete

The following example allows you to delete all entries from the history list:

SQL>history clear

The following example shows you how to edit and run the last used command in the
history list:

SQL>history edit
SQL>history run

Chapter 13
HISTORY

13-53

The following example shows you how to enable or disable command history, and how
to check the command history status:

SQL> set history on
SQL> show history
History is ON and set to "100"
SQL> set history off
SQL> show history
History is OFF
SQL> set history 1000
SQL> show history
History is ON and set to "1000"

The following example shows you how to list all entries in the history list:

SQL> history
 1 show history
 2 show user
 3 desc dual
* 4 select * from dual;

An asterisk (*) indicates the last used command in the command history list.

The following example shows you how to list all entries in the history list, and then
execute the second entry:

SQL> history
 1 show history
 2 show user
 3 desc dual
* 4 select * from dual;
SQL> history 2 run
USER is "SYSTEM"
SQL> history
 1 show hist
* 2 show user
 3 desc dual
 4 select * from dual;

13.27 HOST
Syntax

HO[ST] [command]

where command represents an operating system command.

Executes an operating system command without leaving SQL*Plus.

Enter HOST without command to display an operating system prompt. You can then
enter multiple operating system commands. For information on returning to SQL*Plus,
refer to the platform-specific Oracle documentation provided for your operating
system.

Chapter 13
HOST

13-54

Note:

Operating system commands entered from a SQL*Plus session using the
HOST command do not affect the current SQL*Plus session. For example,
setting an operating system environment variable only affects SQL*Plus
sessions started subsequently.

You can disable HOST. For more information about disabling HOST, see
SQL*Plus Security.

Usage

In some operating systems, you can use a character in place of HOST such as "$" in
Windows or "!" in UNIX, or you may not have access to the HOST command. See the
platform-specific Oracle documentation provided for your operating system or ask your
DBA for more information.

On some platforms, an _RC substitution variable may be created with a HOST return
value that is operation system dependent. It is recommended that you do not use the
_RC substitution variable in scripts as it is not portable.

SQL*Plus removes the SQLTERMINATOR (a semicolon by default) before the HOST
command is issued. A workaround for this is to add another SQLTERMINATOR. See
SET SQLT[ERMINATOR] {; | c | ON | OFF} for more information.

Examples

To execute a UNIX operating system command, ls *.sql, enter

HOST ls *.sql

To execute a Windows operating system command, dir *.sql, enter

HOST dir *.sql

13.28 INPUT
Syntax

I[NPUT] [text]

where text represents the text you wish to add.

Adds one or more new lines of text after the current line in the buffer.

To add a single line, enter the text of the line after the command INPUT, separating
the text from the command with a space. To begin the line with one or more spaces,
enter two or more spaces between INPUT and the first non-blank character of text.

To add several lines, enter INPUT with no text. INPUT prompts you for each line. To
leave INPUT, enter a null (empty) line or a period.

Usage

If you enter a line number at the command prompt larger than the number of lines in
the buffer, and follow the number with text, SQL*Plus adds the text in a new line at the

Chapter 13
INPUT

13-55

end of the buffer. If you specify zero (0) for the line number and follow the zero with
text, then SQL*Plus inserts the line at the beginning of the buffer (that line becomes
line 1).

Examples

Assume the SQL buffer contains the following command:

SELECT LAST_NAME, DEPARTMENT_ID, SALARY, COMMISSION_PCT
FROM EMP_DETAILS_VIEW

To add an ORDER BY clause to the query, enter

LIST 2

2* FROM EMP_DETAILS_VIEW

INPUT ORDER BY LAST_NAME

LIST 2 ensures that line 2 is the current line. INPUT adds a new line containing the
ORDER BY clause after the current line. The SQL buffer now contains the following
lines:

1 SELECT LAST_NAME, DEPARTMENT_ID, SALARY, COMMISSION_PCT
2 FROM EMP_DETAILS_VIEW
3* ORDER BY LAST_NAME

To add a two-line WHERE clause, enter

LIST 2

2* FROM EMP_DETAILS_VIEW

INPUT
 3 WHERE JOB_ID = 'SA_MAN'
 4 AND COMMISSION_PCT=.25
 5

INPUT prompts you for new lines until you enter an empty line or a period. The SQL
buffer now contains the following lines:

SELECT LAST_NAME, DEPARTMENT_ID, SALARY, COMMISSION_PCT
FROM EMP_DETAILS_VIEW
WHERE JOB_ID = 'SA_MAN'
AND COMMISSION_PCT = .25
ORDER BY LAST_NAME

13.29 LIST
Syntax

L[IST] [n | n m | n * | n LAST | * | * n | * LAST | LAST]

Lists one or more lines of the SQL buffer.

Chapter 13
LIST

13-56

In SQL*Plus command-line you can also use ";" to list all the lines in the SQL buffer.

Terms

Term Description

n
Lists line n.

n m
Lists lines n through m.

n *
Lists line n through the current line.

n LAST
Lists line n through the last line.

*
Lists the current line.

* n
Lists the current line through line n.

* LAST
Lists the current line through the last line.

LAST
Lists the last line.

Enter LIST with no clauses, or ";" to list all lines. The last line listed becomes the new
current line (marked by an asterisk).

Examples

To list the contents of the buffer, enter

LIST

or enter

;

1 SELECT LAST_NAME, DEPARTMENT_ID, JOB_ID
2 FROM EMP_DETAILS_VIEW
3 WHERE JOB_ID = 'SH_CLERK'
4* ORDER BY DEPARTMENT_ID

The asterisk indicates that line 4 is the current line.

To list the second line only, enter

LIST 2

The second line is displayed:

2* FROM EMP_DETAILS_VIEW

To list from the current line (now line 2) to the last line, enter

Chapter 13
LIST

13-57

LIST * LAST

You will then see this:

2 FROM EMP_DETAILS_VIEW
3 WHERE JOB_ID = 'SH_CLERK'
4* ORDER BY DEPARTMENT_ID

13.30 PASSWORD
Syntax

PASSW[ORD] [username]

where username specifies the user. If omitted, username defaults to the current user.

Enables you to change a password without echoing it on an input device.

Usage

To change the password of another user, you must have been granted the appropriate
privilege. See CONNECT for more information about changing your password.

Examples

If you want to change your current password, enter

PASSWORD
Changing password for your_password
Old password: your_password
New password: new_password
Retype new password: new_password
Password changed

If you are logged on as a DBA, and want to change the password for user johnw
(currently identified by johnwpass) to johnwnewpass

PASSWORD johnw
Changing password for johnw
New password: johnwnewpass
Retype new password: johnwnewpass
Password changed

Passwords are not echoed to the screen, they are shown here for your convenience.

13.31 PAUSE
Syntax

PAU[SE] [text]

where text represents the text you wish to display.

Displays the specified text then waits for the user to press RETURN.

Chapter 13
PASSWORD

13-58

Enter PAUSE followed by no text to display two empty lines.

Usage

Because PAUSE always waits for the user's response, it is best to use a message that
tells the user explicitly to press [Return].

PAUSE reads input from the terminal (if a terminal is available) even when you have
designated the source of the command input as a file.

See SET PAU[SE] {ON | OFF | text} for information on pausing between pages of a
report.

Examples

To print "Adjust paper and press RETURN to continue." and to have SQL*Plus wait for
the user to press [Return], you might include the following PAUSE command in a
script:

SET PAUSE OFF
PAUSE Adjust paper and press RETURN to continue.
SELECT ...

13.32 PRINT
Syntax

PRINT [variable ...]

where variable ... represents names of bind variables whose values you want to
display.

Displays the current values of bind variables.

Enter PRINT with no variables to print all bind variables.

Usage

Bind variables are created using the VARIABLE command. See VARIABLE for more
information and examples.

You can control the formatting of the PRINT output just as you would query output. For
more information, see the formatting techniques described in Formatting SQL*Plus
Reports.

To automatically display bind variables referenced in a successful PL/SQL block or
used in an EXECUTE command, use the AUTOPRINT clause of the SET command.
See SET for more information.

Examples

The following example illustrates a PRINT command:

VARIABLE n NUMBER
BEGIN
:n := 1;

Chapter 13
PRINT

13-59

END;
/

PL/SQL procedure successfully completed.

PRINT n

N

1

13.33 PROMPT
Syntax

PRO[MPT] [text]

where text represents the text of the message you want to display.

Sends the specified message or a blank line to the user's screen. If you omit text,
PROMPT displays a blank line on the user's screen.

Usage

You can use this command in scripts to give information to the user.

Examples

The following example shows the use of PROMPT in conjunction with ACCEPT in a
script called ASKFORDEPT.SQL. ASKFORDEPT.SQL contains the following
SQL*Plus and SQL commands:

PROMPTPROMPT Please enter a valid departmentPROMPT For example: 10SELECT
DEPARTMENT_NAME FROM EMP_DETAILS_VIEWWHERE DEPARTMENT_ID = &NEWDEPT

Assume you run the file using START or @:

@ASKFORDEPT.SQL VAL1
@HTTP://machine_name.domain:port/ASKFORDEPT.SQL VAL1

Please enter a valid department
For example: 10
Department ID?>

You can enter a department number at the prompt Department ID?>. By default,
SQL*Plus lists the line containing &NEWDEPT before and after substitution, and then
displays the department name corresponding to the number entered at the
Department ID?> prompt. You can use SET VERIFY OFF to prevent this behavior.

13.34 RECOVER
Syntax

RECOVER {general | managed | BEGIN BACKUP | END BACKUP}

Chapter 13
PROMPT

13-60

where the general clause has the following syntax:

[AUTOMATIC] [FROM location]
{ {full_database_recovery | partial_database_recovery | LOGFILE filename}
[{TEST | ALLOW integer CORRUPTION | parallel_clause } [TEST
| ALLOW integer CORRUPTION | parallel_clause]...]| CONTINUE [DEFAULT] | CANCEL}

where the full_database_recovery clause has the following syntax:

[STANDBY] DATABASE
 [{UNTIL {CANCEL | TIME date | CHANGE integer} | USING BACKUP CONTROLFILE
 | SNAPSHOT TIME date}...]

where the partial_database_recovery clause has the following syntax:

{TABLESPACE tablespace [, tablespace]...
 | DATAFILE {filename | filenumber} [, filename | filenumber]...
 | STANDBY {TABLESPACE tablespace [, tablespace]...
 | DATAFILE {filename | filenumber} [, filename | filenumber]...}
 UNTIL [CONSISTENT WITH] CONTROLFILE }

where the parallel clause has the following syntax:

{ NOPARALLEL | PARALLEL [integer] }

where the managed clause has the following syntax:

MANAGED STANDBY DATABASE recover_clause | cancel_clause | finish_clause

where the recover_clause has the following syntax:

{ { DISCONNECT [FROM SESSION] | { TIMEOUT integer | NOTIMEOUT } }
 | { NODELAY | DEFAULT DELAY | DELAY integer }
 | NEXT integer | { EXPIRE integer | NO EXPIRE }
 | parallel_clause | USING CURRENT LOGFILE | UNTIL CHANGE integer
 | THROUGH { [THREAD integer] SEQUENCE integer
 | ALL ARCHIVELOG | { ALL | LAST | NEXT } SWITCHOVER}} ...

where the cancel_clause has the following syntax:

CANCEL [IMMEDIATE] [WAIT | NOWAIT]

where the finish_clause has the following syntax:

[DISCONNECT [FROM SESSION]] [parallel_clause]
FINISH [SKIP [STANDBY LOGFILE]] [WAIT | NOWAIT]

where the parallel_clause has the following syntax:

{ NOPARALLEL | PARALLEL [integer] }

Performs media recovery on one or more tablespaces, one or more datafiles, or the
entire database. For more information on the RECOVER command, see the Oracle
Database Administrator's Guide, the ALTER DATABASE RECOVER command in the
Oracle Database SQL Language Reference, and the Oracle Database Backup and
Recovery User's Guide guide.

Terms

AUTOMATIC

Chapter 13
RECOVER

13-61

Automatically generates the name of the next archived redo log file needed to continue
the recovery operation. Oracle Database uses the LOG_ARCHIVE_DEST (or
LOG_ARCHIVE_DEST_ 1) and LOG_ARCHIVE_FORMAT parameters (or their
defaults) to generate the target redo log filename. If the file is found, the redo
contained in that file is applied. If the file is not found, SQL*Plus prompts you for a
filename, displaying a generated filename as a suggestion.

If you do not specify either AUTOMATIC or LOGFILE, SQL*Plus prompts you for a
filename, suggesting the generated filename. You can either accept the generated
filename or replace it with a fully qualified filename. You can save time by using the
LOGFILE clause to specify the filename if you know the archived filename differs from
the filename Oracle Database would generate.

FROM location

Specifies the location from which the archived redo log file group is read. The value of
location must be a fully specified file location. If you omit this parameter, SQL*Plus
assumes the archived redo log file group is in the location specified by the initialization
parameter LOG_ARCHIVE_DEST or LOG_ARCHIVE_DEST_1. Do not specify FROM
if you have set a file with SET LOGSOURCE.

full_database_recovery

Enables you to specify the recovery of a full database.

partial_database_recovery

Enables you to specify the recovery of individual tablespaces and datafiles.

LOGFILE

Continues media recovery by applying the specified redo log file. In interactive
recovery mode (AUTORECOVERY OFF), if a bad log name is entered, errors for the
bad log name are displayed and you are prompted to enter a new log name.

TEST

Specifies a trial recovery to detect possible problems. Redo is applied normally, but no
changes are written to disk, and changes are rolled back at the end of the trial
recovery. You can only use the TEST clause for a trial recovery if you have restored a
backup. In the event of logfile corruption, specifies the number of corrupt blocks that
can be tolerated while allowing recovery to proceed. During normal recovery, integer
cannot exceed 1.

ALLOW integer CORRUPTION

In the event of logfile corruption, specifies the number of corrupt blocks that can be
tolerated while allowing recovery to proceed.

parallel _clause

Enables you to specify the degree of parallel processing to use during the recovery
operation.

CONTINUE

Continues multi-instance recovery after it has been interrupted to disable a thread.

CONTINUE DEFAULT

Chapter 13
RECOVER

13-62

Continues recovery using the redo log file generated automatically by Oracle
Database if no other logfile is specified. This is equivalent to specifying AUTOMATIC,
except that Oracle Database does not prompt for a filename.

CANCEL

Terminates cancel-based recovery.

SNAPSHOT TIME date

Recovers the database with a storage snapshot using Storage snapshot Optimization.

STANDBY DATABASE

Recovers the standby database using the control file and archived redo log files
copied from the primary database. The standby database must be mounted but not
open.

DATABASE

Recovers the entire database.

UNTIL CANCEL

Specifies an incomplete, cancel-based recovery. Recovery proceeds by prompting you
with suggested filenames of archived redo log files, and recovery completes when you
specify CANCEL instead of a filename.

UNTIL TIME

Specifies an incomplete, time-based recovery. Use single quotes, and the following
format:

'YYYY-MM-DD:HH24:MI:SS'

UNTIL CHANGE

Specifies an incomplete, change-based recovery. integer is the number of the System
Change Number (SCN) following the last change you wish to recover. For example, if
you want to restore your database up to the transaction with an SCN of 9, you would
specify UNTIL CHANGE 10.

USING BACKUP CONTROLFILE

Specifies that a backup of the control file be used instead of the current control file.

TABLESPACE

Recovers a particular tablespace. tablespace is the name of a tablespace in the
current database. You may recover up to 16 tablespaces in one statement.

DATAFILE

Recovers a particular datafile. You can specify any number of datafiles.

STANDBY TABLESPACE

Reconstructs a lost or damaged tablespace in the standby database using archived
redo log files copied from the primary database and a control file.

STANDBY DATAFILE

Chapter 13
RECOVER

13-63

Reconstructs a lost or damaged datafile in the standby database using archived redo
log files copied from the primary database and a control file.

UNTIL CONSISTENT WITH CONTROLFILE

Specifies that the recovery of an old standby datafile or tablespace uses the current
standby database control file.

PARALLEL [integer]

This is the default. SQL*Plus selects a degree of parallelism equal to the number of
CPUs available on all participating instances times the value of the
PARALLEL_THREADS_PER_CPU initialization parameter.

The PARALLEL keyword overrides the RECOVERY_PARALLELISM initialization
parameter. For more information about the PARALLEL keyword see the Oracle Real
Application Clusters Administration and Deployment Guide guide.

Use integer to specify the degree of parallelism, which is the number of parallel
threads used in the parallel operation. Each parallel thread may use one or two
parallel execution processes.

NOPARALLEL

Specifies serial recovery processing.

MANAGED STANDBY DATABASE

Specifies sustained standby recovery mode. This mode assumes that the standby
database is an active component of an overall standby database architecture. A
primary database actively archives its redo log files to the standby site. As these
archived redo logs arrive at the standby site, they become available for use by a
managed standby recovery operation. Sustained standby recovery is restricted to
media recovery.

For more information on the parameters of this clause, see the Oracle Database
Backup and Recovery User's Guide.

DISCONNECT

Indicates that the managed redo process (MRP) should apply archived redo files as a
detached background process. Doing so leaves the current session available.

TIMEOUT

Specifies in minutes the wait period of the sustained recovery operation. The recovery
process waits for integer minutes for a requested archived log redo to be available for
writing to the standby database. If the redo log file does not become available within
that time, the recovery process terminates with an error message. You can then issue
the statement again to return to sustained standby recovery mode.

If you do not specify this clause, or if you specify NOTIMEOUT, the database remains
in sustained standby recovery mode until you reissue the statement with the
RECOVER CANCEL clause or until instance shutdown or failure.

NODELAY

Applies a delayed archivelog immediately to the standby database overriding any
DELAY setting in the LOG_ARCHIVE_DEST_n parameter on the primary database. If
you omit this clause, application of the archivelog is delayed according to the

Chapter 13
RECOVER

13-64

parameter setting. If DELAY was not specified in the parameter, the archivelog is
applied immediately.

DEFAULT DELAY

Waits the default number of minutes specified in the LOG_ARCHIVE_DEST_n
initialization parameter before applying the archived redo logs.

DELAY integer

Waits integer minutes before applying the archived redo logs.

NEXT integer

Applies the specified number of archived redo logs as soon as possible after they have
been archived. It temporarily overrides any DELAY setting in the
LOG_ARCHIVE_DEST_n parameter on the primary database, and any delay values
set in an earlier SQL*Plus RECOVER command or an ALTER DATABASE RECOVER
command.

EXPIRE integer

Specifies the number of minutes from the current time after which managed recovery
terminates automatically.

NO EXPIRE

Disables a previously specified EXPIRE integer option.

USING CURRENT LOGFILE

Recovers redo from standby online logs as they are being filled, without requiring them
to be archived in the standby database first.

UNTIL CHANGE integer

Processes managed recovery up to but not including the specified system change
number (SCN).

THROUGH THREAD integer SEQUENCE integer

Terminates managed recovery based on archivelog thread number and sequence
number. Managed recovery terminates when the corresponding archivelog has been
applied. If omitted, THREAD defaults to 1.

THROUGH ALL ARCHIVELOG

Continues managed standby until all archivelogs have been recovered. You can use
this statement to override a THROUGH THREAD integer SEQUENCE integer clause
issued in an earlier statement. If the THROUGH clause is omitted, this is the default.

THROUGH ALL SWITCHOVER

Keeps managed standby recovery running through all switchover operations.

THROUGH LAST SWITCHOVER

Terminates managed standby recovery after the final end-of-redo archival indicator.

THROUGH NEXT SWITCHOVER

Chapter 13
RECOVER

13-65

Terminates managed standby recovery after recovering the next end-of-redo archival
indicator.

CANCEL (managed clause)

Terminates managed standby recovery after applying the current archived redo file.
Session control returns when the recovery process terminates.

CANCEL IMMEDIATE

Terminates managed standby recovery after applying the current archived redo file, or
after the next redo log file read, whichever comes first. Session control returns when
the recovery process terminates.

CANCEL IMMEDIATE WAIT

Terminates managed standby recovery after applying the current archived redo file or
after the next redo log file read, whichever comes first. Session control returns when
the managed standby recovery terminates.

CANCEL IMMEDIATE cannot be issued from the same session that issued the
RECOVER MANAGED STANDBY DATABASE statement.

CANCEL IMMEDIATE NOWAIT

Terminates managed standby recovery after applying the current archived redo file, or
after the next redo log file read, whichever comes first. Session control returns
immediately.

CANCEL NOWAIT

Terminates managed standby recovery after the next redo log file read and returns
session control immediately.

FINISH

Recovers the current standby online logfiles of the standby database. This clause may
be useful if the primary database fails. It overrides any delays specified for
archivelogs, so that logs are applied immediately.

FINISH cannot be issued if you have also specified TIMEOUT, DELAY, EXPIRE or
NEXT clauses.

Usage

You must have the OSDBA role enabled. You cannot use the RECOVER command
when connected through the multi-threaded server.

To perform media recovery on an entire database (all tablespaces), the database must
be mounted and closed, and all tablespaces requiring recovery must be online.

To perform media recovery on a tablespace, the database must be mounted or open,
and the tablespace must be offline.

To perform media recovery on a datafile, the database can remain open and mounted
with the damaged datafiles offline (unless the file is part of the SYSTEM tablespace).

Before using the RECOVER command you must have restored copies of the damaged
datafiles from a previous backup. Be sure you can access all archived and online redo
log files dating back to when that backup was made.

Chapter 13
RECOVER

13-66

When another log file is required during recovery, a prompt suggests the names of
files that are needed. The name is derived from the values specified in the initialization
parameters LOG_ARCHIVE_DEST and LOG_ARCHIVE_FORMAT. You should
restore copies of the archived redo log files needed for recovery to the destination
specified in LOG_ARCHIVE_DEST, if necessary. You can override the initialization
parameters by setting the LOGSOURCE variable with the SET LOGSOURCE
command.

During recovery you can accept the suggested log name by pressing return, cancel
recovery by entering CANCEL instead of a log name, or enter AUTO at the prompt for
automatic file selection without further prompting.

If you have enabled autorecovery (that is, SET AUTORECOVERY ON), recovery
proceeds without prompting you with filenames. Status messages are displayed when
each log file is applied. When normal media recovery is done, a completion status is
returned.

Examples

To recover the entire database, enter

RECOVER DATABASE

To recover the database until a specified time, enter

RECOVER DATABASE UNTIL TIME 01-JAN-2001:04:32:00

To recover the two tablespaces ts_one and ts_two from the database, enter

RECOVER TABLESPACE ts_one, ts_two

To recover the datafile data1.db from the database, enter

RECOVER DATAFILE 'data1.db'

13.35 REMARK
Syntax

REM[ARK]

Begins a comment in a script. SQL*Plus does not interpret the comment as a
command.

Usage

The REMARK command must appear at the beginning of a line, and the comment
ends at the end of the line. A line cannot contain both a comment and a command.

A "–" at the end of a REMARK line is treated as a line continuation character.

For details on entering comments in scripts using the SQL comment delimiters, /* ... */,
or the ANSI/ISO comment delimiter, - -, see About Placing Comments in Scripts.

Examples

The following script contains some typical comments:

Chapter 13
REMARK

13-67

REM COMPUTE uses BREAK ON REPORT to break on end of table
BREAK ON REPORT
COMPUTE SUM OF "DEPARTMENT 10" "DEPARTMENT 20" -
"DEPARTMENT 30" "TOTAL BY JOB_ID" ON REPORT
REM Each column displays the sums of salaries by job for
REM one of the departments 10, 20, 30.
SELECT JOB_ID,
SUM(DECODE(DEPARTMENT_ID, 10, SALARY, 0)) "DEPARTMENT 10",
SUM(DECODE(DEPARTMENT_ID, 20, SALARY, 0)) "DEPARTMENT 20",
SUM(DECODE(DEPARTMENT_ID, 30, SALARY, 0)) "DEPARTMENT 30",
SUM(SALARY) "TOTAL BY JOB_ID"
FROM EMP_DETAILS_VIEW
GROUP BY JOB_ID;

13.36 REPFOOTER
Syntax

REPF[OOTER] [PAGE] [printspec [text | variable] ...] | [ON | OFF]

where printspec represents one or more of the following clauses used to place and
format the text:

COL n S[KIP] [n] TAB n LE[FT] CE[NTER] R[IGHT] BOLD FORMAT text

Places and formats a specified report footer at the bottom of each report, or lists the
current REPFOOTER definition.

Enter REPFOOTER with no clauses to list the current REPFOOTER definition.

Terms

See the REPHEADER command for additional information on terms and clauses in the
REPFOOTER command syntax.

Usage

If you do not enter a printspec clause before the text or variables, REPFOOTER left
justifies the text or variables.

You can use any number of constants and variables in a printspec. SQL*Plus displays
the constants and variables in the order you specify them, positioning and formatting
each constant or variable as specified by the printspec clauses that precede it.

Note:

If SET EMBEDDED is ON, the report footer is suppressed.

Examples

To define "END EMPLOYEE LISTING REPORT" as a report footer on a separate
page and to center it, enter:

REPFOOTER PAGE CENTER 'END EMPLOYEE LISTING REPORT'
TTITLE RIGHT 'Page: ' FORMAT 999 SQL.PNO
SELECT LAST_NAME, SALARY

Chapter 13
REPFOOTER

13-68

FROM EMP_DETAILS_VIEW
WHERE SALARY > 12000;

LAST_NAME SALARY
------------------------- ----------
King 24000
Kochhar 17000
De Haan 17000
Russell 14000
Partners 13500
Hartstein 13000

sum 98500

Page: 2
 END EMPLOYEE LISTING REPORT

6 rows selected.

To suppress the report footer without changing its definition, enter

REPFOOTER OFF

13.37 REPHEADER
Syntax

REPH[EADER] [PAGE] [printspec [text | variable] ...] | [ON | OFF]

where printspec represents one or more of the following clauses used to place and
format the text:

COL n S[KIP] [n] TAB n LE[FT] CE[NTER] R[IGHT] BOLD FORMAT text

Places and formats a specified report header at the top of each report, or lists the
current REPHEADER definition.

Enter REPHEADER with no clauses to list the current REPHEADER definition.

Terms

These terms and clauses also apply to the REPFOOTER command.

PAGE

Begins a new page after printing the specified report header or before printing the
specified report footer.

text

The report header or footer text. Enter text in single quotes if you want to place more
than one word on a single line. The default is NULL.

variable

Chapter 13
REPHEADER

13-69

A substitution variable or any of the following system-maintained values. SQL.LNO is
the current line number, SQL.PNO is the current page number, SQL.CODE is the
current error code, SQL.RELEASE is the current Oracle Database release number,
and SQL.USER is the current username.

To print one of these values, reference the appropriate variable in the report header or
footer. You can use the FORMAT clause to format variable.

OFF

Turns the report header or footer off (suppresses its display) without affecting its
definition.

COL n

Indents to column n of the current line (backward if column n has been passed).
Column in this context means print position, not table column.

S[KIP] [n]

Skips to the start of a new line n times; if you omit n, one time; if you enter zero for n,
backward to the start of the current line.

TAB n

Skips forward n columns (backward if you enter a negative value for n). Column in this
context means print position, not table column.

LE[FT] CE[NTER] R[IGHT]

Left-align, center, and right-align data on the current line respectively. SQL*Plus aligns
following data items as a group, up to the end of the printspec or the next LEFT,
CENTER, RIGHT, or COL command. CENTER and RIGHT use the SET LINESIZE
value to calculate the position of the data item that follows.

BOLD

Prints data in bold print. SQL*Plus represents bold print on your terminal by repeating
the data on three consecutive lines. On some operating systems, SQL*Plus may
instruct your printer to print bold text on three consecutive lines, instead of bold.

FORMAT text

Specifies a format model that determines the format of data items up to the next
FORMAT clause or the end of the command. The format model must be a text
constant such as A10 or $999. See COLUMN for more information on formatting and
valid format models.

If the datatype of the format model does not match the datatype of a given data item,
the FORMAT clause has no effect on that item.

If no appropriate FORMAT model precedes a given data item, SQL*Plus prints
NUMBER values according to the format specified by SET NUMFORMAT or, if you
have not used SET NUMFORMAT, the default format. SQL*Plus prints DATE values
using the default format.

Usage

If you do not enter a printspec clause before the text or variables, REPHEADER left
justifies the text or variables.

Chapter 13
REPHEADER

13-70

You can use any number of constants and variables in a printspec. SQL*Plus displays
the constants and variables in the order you specify, positioning and formatting each
constant or variable as specified by the printspec clauses that precede it.

Examples

To define "EMPLOYEE LISTING REPORT" as a report header on a separate page,
and to center it, enter:

REPHEADER PAGE CENTER 'EMPLOYEE LISTING REPORT'
TTITLE RIGHT 'Page: ' FORMAT 999 SQL.PNO
SELECT LAST_NAME, SALARY
FROM EMP_DETAILS_VIEW
WHERE SALARY > 12000;

 Page: 1
 EMPLOYEE LISTING REPORT
 Page: 2
LAST_NAME SALARY
------------------------- ----------
King 24000
Kochhar 17000
De Haan 17000
Russell 14000
Partners 13500
Hartstein 13000

sum 98500

6 rows selected.

To suppress the report header without changing its definition, enter:

REPHEADER OFF

13.38 RUN
Syntax

R[UN]

Lists and executes the SQL command or PL/SQL block currently stored in the SQL
buffer.

Usage

RUN causes the last line of the SQL buffer to become the current line.

The slash command (/) functions similarly to RUN, but does not list the command in
the SQL buffer on your screen. The SQL buffer always contains the last SQL
statement or PL/SQL block entered.

Examples

Assume the SQL buffer contains the following script:

Chapter 13
RUN

13-71

SELECT DEPARTMENT_ID
FROM EMP_DETAILS_VIEW
WHERE SALARY>12000

To RUN the script, enter

RUN

 1 SELECT DEPARTMENT_ID
 2 FROM EMP_DETAILS_VIEW
 3 WHERE SALARY>12000

DEPARTMENT_ID

 90
 90
 90
 80
 80
 20

6 rows selected.

13.39 SAVE
Syntax

SAV[E] [FILE] file_name[.ext] [CRE[ATE] | REP[LACE] | APP[END]]

Saves the contents of the SQL buffer in an operating system script.

Terms

FILE

Keyword to specify that the following argument is the name you want to give to the
saved script. This optional keyword is usually omitted.

If you want to save the script with the name file, because it is a command keyword,
you need to put the name file in single quotes.

file_name[.ext]

Specifies the script in which you wish to save the buffer's contents.

CREATE

Creates a new file with the name specified. This is the default behavior.

REP[LACE]

Replaces the contents of an existing file. If the file does not exist, REPLACE creates
the file.

APP[END]

Adds the contents of the buffer to the end of the file you specify.

Chapter 13
SAVE

13-72

Usage

If you do not specify an extension, SQL*Plus assumes the default command-file
extension (normally SQL). See SET SUF[FIX] {SQL | text} for information on changing
this default extension.

If you wish to SAVE a file under a name identical to a SAVE command clause
(CREATE, REPLACE, or APPEND), you must specify a file extension.

When you SAVE the contents of the SQL buffer, SAVE adds a line containing a slash
(/) to the end of the file.

Examples

To save the contents of the buffer in a file named DEPTSALRPT with the extension
SQL, enter

SAVE DEPTSALRPT

To save the contents of the buffer in a file named DEPTSALRPT with the extension
OLD, enter

SAVE DEPTSALRPT.OLD

13.40 SET
Sets a system variable to alter the SQL*Plus environment settings for your current
session, for example, to:

• customize HTML formatting

• enable or disable the printing of column headings

• set the number of lines per page

• set the display width for data

Syntax

SET system_variable value

where system_variable and value represent one of the clauses shown in the SET
System Variable Summary table following.

Usage

SQL*Plus maintains system variables (also called SET command variables) to enable
you to set up a particular environment for a SQL*Plus session. You can change these
system variables with the SET command and list them with the SHOW command. The
default value for each system variable is underlined in the following sections.

SET ROLE and SET TRANSACTION are SQL commands (see SQL Statements:
MERGE to UPDATE for more information). When not followed by the keywords
TRANSACTION or ROLE, SET is assumed to be a SQL*Plus command.

Chapter 13
SET

13-73

13.41 SET System Variable Summary

System Variable Description

SET APPI[NFO]{ON | OFF | text} Sets automatic registering of scripts through the
DBMS_APPLICATION_INFO package.

SET ARRAY[SIZE] {15 | n} Sets the number of rows, called a batch, that SQL*Plus will fetch
from the database at one time.

SET AUTO[COMMIT]{ON | OFF | IMM[EDIATE] | n} Controls when Oracle Database commits pending changes to the
database.

SET AUTOP[RINT] {ON | OFF} Sets the automatic printing of bind variables.

SET AUTORECOVERY [ON | OFF] ON sets the RECOVER command to automatically apply the
default filenames of archived redo log files needed during
recovery.

SET AUTOT[RACE] {ON | OFF | TRACE[ONLY]}
[EXP[LAIN]] [STAT[ISTICS]]

Displays a report on the execution of successful SQL DML
statements (SELECT, INSERT, UPDATE, DELETE or MERGE).

SET BLO[CKTERMINATOR] {. | c | ON | OFF} Sets the non-alphanumeric character used to end PL/SQL blocks
to c.

SET CMDS[EP] {; | c | ON | OFF} Sets the non-alphanumeric character used to separate multiple
SQL*Plus commands entered on one line to c.

SET COLINVI[SIBLE] [ON | OFF] ON sets the DESCRIBE command to display column information
for an invisible column..

SET COLSEP { | text} Sets the text to be printed between selected columns.

SET CON[CAT] {. | c | ON | OFF} Sets the character you can use to terminate a substitution variable
reference if you wish to immediately follow the variable with a
character that SQL*Plus would otherwise interpret as a part of the
substitution variable name.

SET COPYC[OMMIT] {0 | n} Controls the number of batches after which the COPY command
commits changes to the database.

SET COPYTYPECHECK {ON | OFF} Sets the suppression of the comparison of datatypes while
inserting or appending to tables with the COPY command.

SET DEF[INE] {& | c | ON | OFF} Sets the character used to prefix variables to c.

SET DESCRIBE [DEPTH {1 | n | ALL}] [LINENUM
{ON | OFF}] [INDENT {ON | OFF}]

Sets the depth of the level to which you can recursively describe
an object.

SET ECHO {ON | OFF} Controls whether the START command lists each command in a
script as the command is executed.

SET EDITF[ILE] file_name[.ext] Sets the default filename for the EDIT command.

SET EMB[EDDED] {ON | OFF} Controls where on a page each report begins.

Chapter 13
SET System Variable Summary

13-74

System Variable Description

SET ERRORL[OGGING] {ON | OFF} [TABLE
[schema.]tablename] [TRUNCATE] [IDENTIFIER
identifier]

Enables recording of SQL, PL/SQL and SQL*Plus errors to an
error log table which you can query later.

SET ESC[APE] {\ | c | ON | OFF} Defines the character you enter as the escape character.

SET ESCCHAR {@ | ? | % | OFF} Specifies a special character to escape in a filename. Prevents
character translation causing an error.

SET EXITC[OMMIT] {ON | OFF} Specifies whether the default EXIT behavior is COMMIT or
ROLLBACK.

SET FEED[BACK] {6 | n | ON | OFF | ONLY}]
[SQL_ID]

Displays the number of records returned by a query when a query
selects at least n records.

SET FLAGGER {OFF | ENTRY | INTERMED[IATE] |
FULL}

Checks to make sure that SQL statements conform to the
ANSI/ISO SQL92 standard.

SET FLU[SH] {ON | OFF} Controls when output is sent to the user's display device.

SET HEA[DING] {ON | OFF} Controls printing of column headings in reports.

SET HEADS[EP] { | c | ON | OFF} Defines the character you enter as the heading separator
character.

SET HIST[ORY] {ON | OFF | n} Enables or disables the history of commands and SQL or PL/SQL
statements issued in the current SQL*Plus session.

SET INSTANCE [instance_path | LOCAL] Changes the default instance for your session to the specified
instance path.

SET JSONPRINT Formats the output of JSON type columns.

SET LIN[ESIZE] {80 | n | WINDOW} Sets the total number of characters that SQL*Plus displays on one
line before beginning a new line.

SET LOBOF[FSET] {1 | n} Sets the starting position from which BLOB, BFILE, CLOB and
NCLOB data is retrieved and displayed.

SET LOBPREFETCH {0 | n} Sets the amount of LOB data that SQL*Plus will prefetch from the
database at one time.

SET LOGSOURCE [pathname] Specifies the location from which archive logs are retrieved during
recovery.

SET LONG {80 | n} Sets maximum width (in bytes) for displaying LONG, BLOB,
BFILE, CLOB, NCLOB and XMLType values; and for copying
LONG values.

SET LONGC[HUNKSIZE] {80 | n} Sets the size (in bytes) of the increments in which SQL*Plus
retrieves a LONG, BLOB, BFILE, CLOB, NCLOB or XMLType
value.

SET MARK[UP] Outputs CSV format data or HTML marked up text.

Chapter 13
SET System Variable Summary

13-75

System Variable Description

SET NEWP[AGE] {1 | n | NONE} Sets the number of blank lines to be printed from the top of each
page to the top title.

SET NULL text Sets the text that represents a null value in the result of a SQL
SELECT command.

SET NUMF[ORMAT] format Sets the default format for displaying numbers.

SET NUM[WIDTH] {10 | n} Sets the default width for displaying numbers.

SET PAGES[IZE] {14 | n} Sets the number of lines in each page.

SET PAU[SE] {ON | OFF | text} Enables you to control scrolling of your terminal when running
reports.

SET RECSEP {WR[APPED] | EA[CH] | OFF} RECSEP tells SQL*Plus where to make the record separation.

SET RECSEPCHAR { | c} Display or print record separators.

SET ROWLIMIT {n | OFF} Sets a limit for the number of rows to display for a query.

SET ROWPREFETCH {15 | n} Sets the number of rows that SQL*Plus will prefetch from the
database at one time.

SET SECUREDCOL {OFF | ON} [UNAUTH[ORIZED]
text] [UNK[NOWN] text]

Sets how secure column values are displayed for users without
permission to view a column and for columns with unknown
security.

SET SERVEROUT[PUT] {ON | OFF} [SIZE {n |
UNL[IMITED]}] [FOR[MAT] {WRA[PPED] |
WOR[D_WRAPPED] | TRU[NCATED]}]

Controls whether to display the output (that is, DBMS_OUTPUT
PUT_LINE) of stored procedures or PL/SQL blocks in SQL*Plus.

SET SHIFT[INOUT] {VIS[IBLE] | INV[ISIBLE]} Enables correct alignment for terminals that display shift
characters.

SET SHOW[MODE] {ON | OFF} Controls whether SQL*Plus lists the old and new settings of a
SQL*Plus system variable when you change the setting with SET.

SET SQLBL[ANKLINES] {ON | OFF} Controls whether SQL*Plus puts blank lines within a SQL
command or script.

SET SQLC[ASE] {MIX[ED] | LO[WER] | UP[PER]} Converts the case of SQL commands and PL/SQL blocks just
prior to execution.

SET SQLCO[NTINUE] {> | text} Sets the character sequence SQL*Plus displays as a prompt after
you continue a SQL*Plus command on an additional line using a
hyphen (–).

SET SQLN[UMBER] {ON | OFF} Sets the prompt for the second and subsequent lines of a SQL
command or PL/SQL block.

SET SQLPLUSCOMPAT[IBILITY] {x.y[.z]} Sets the behavior or output format of VARIABLE to that of the
release or version specified by x.y[.z].

SET SQLPRE[FIX] {# | c} Sets the SQL*Plus prefix character.

Chapter 13
SET System Variable Summary

13-76

System Variable Description

SET SQLP[ROMPT] {SQL> | text} Sets the SQL*Plus command prompt.

SET SQLT[ERMINATOR] {; | c | ON | OFF} Sets the character used to end and execute SQL commands to c.

SET STATEMENTC[ACHE] {0 | n} Sets the statement cache size .

SET SUF[FIX] {SQL | text} Sets the default file that SQL*Plus uses in commands that refer to
scripts.

SET TAB {ON | OFF} Determines how SQL*Plus formats white space in terminal output.

SET TERM[OUT] {ON | OFF} Controls the display of output generated by commands executed
from a script.

SET TI[ME] {ON | OFF} Controls the display of the current time.

SET TIMI[NG] {ON | OFF} Controls the display of timing statistics.

SET TRIM[OUT] {ON | OFF} Determines whether SQL*Plus puts trailing blanks at the end of
each displayed line.

SET TRIMS[POOL] {ON | OFF} Determines whether SQL*Plus puts trailing blanks at the end of
each spooled line.

SET UND[ERLINE] {- | c | ON | OFF} Sets the character used to underline column headings in
SQL*Plus reports to c.

SET VER[IFY] {ON | OFF} Controls whether SQL*Plus lists the text of a SQL statement or
PL/SQL command before and after SQL*Plus replaces
substitution variables with values.

SET WRA[P] {ON | OFF} Controls whether SQL*Plus truncates the display of a SELECTed
row if it is too long for the current line width.

SET XMLOPT[IMIZATIONCHECK] [ON|OFF] Specifies that only fully optimized XML queries and DML
operations are executed. Only to assist in developing and
debugging, not for production.

SET XQUERY BASEURI {text} Defines the base URI to use. This is useful to change the prefix of
the file to access when writing generic XQuery expressions.

SET XQUERY ORDERING {UNORDERED |
ORDERED | DEFAULT}

Controls the ordering of results from an XQuery.

SET XQUERY NODE {BYVALUE | BYREFERENCE |
DEFAULT}

Sets the preservation mode for notes created or returned.

SET XQUERY CONTEXT {text} Specifies an XQuery context item which can be either a node or a
value.

Chapter 13
SET System Variable Summary

13-77

13.41.1 SET APPINFO
Syntax

SET APPI[NFO] {ON | OFF | text}

Sets automatic registering of scripts through the DBMS_APPLICATION_INFO
package.

This enables the performance and resource usage of each script to be monitored by
your DBA. The registered name appears in the MODULE column of the V$SESSION
and V$SQLAREA virtual tables. You can also read the registered name using the
DBMS_APPLICATION_INFO.READ_MODULE procedure.

ON registers scripts invoked by the @, @@ or START commands. OFF disables
registering of scripts. Instead, the current value of text is registered. text specifies the
text to register when no script is being run or when APPINFO is OFF, which is the
default. The default for text is "SQL*Plus". If you enter multiple words for text, you must
enclose them in quotes. The maximum length for text is limited by the
DBMS_APPLICATION_INFO package.

The registered name has the format nn@xfilename where: nn is the depth level of
script; x is '<' when the script name is truncated, otherwise, it is blank; and filename is
the script name, possibly truncated to the length allowed by the
DBMS_APPLICATION_INFO package interface.

Example

To display the value of APPINFO, as it is SET OFF by default, enter

SET APPINFO ON
SHOW APPINFO

APPINFO is ON and set to "SQL*Plus"

To change the default text, enter

SET APPINFO 'This is SQL*Plus'

To make sure that registration has taken place, enter

VARIABLE MOD VARCHAR2(50)
VARIABLE ACT VARCHAR2(40)
EXECUTE DBMS_APPLICATION_INFO.READ_MODULE(:MOD, :ACT);

PL/SQL procedure successfully completed.

PRINT MOD

MOD

This is SQL*Plus

Chapter 13
SET System Variable Summary

13-78

To change APPINFO back to its default setting, enter

SET APPINFO OFF

13.41.2 SET ARRAYSIZE
Syntax

SET ARRAY[SIZE] {15 | n}

Sets the number of rows that SQL*Plus will fetch from the database at one time.

Valid values are 1 to 5000. A large value increases the efficiency of queries and
subqueries that fetch many rows, but requires more memory. Values over
approximately 100 provide little added performance. ARRAYSIZE has no effect on the
results of SQL*Plus operations other than increasing efficiency.

13.41.3 SET AUTOCOMMIT
Syntax

SET AUTO[COMMIT] {ON | OFF | IMM[EDIATE] | n}

Controls when Oracle Database commits pending changes to the database after SQL
or PL/SQL commands.

ON commits pending changes to the database after Oracle Database executes each
successful INSERT, UPDATE, or DELETE, or PL/SQL block. OFF suppresses
automatic committing so that you must commit changes manually (for example, with
the SQL command COMMIT). IMMEDIATE functions in the same manner as ON. n
commits pending changes to the database after Oracle Database executes n
successful SQL INSERT, UPDATE, or DELETE commands, or PL/SQL blocks. n
cannot be less than zero or greater than 2,000,000,000. The statement counter is
reset to zero after successful completion of n INSERT, UPDATE or DELETE
commands or PL/SQL blocks, a commit, a rollback, or a SET AUTOCOMMIT
command.

SET AUTOCOMMIT does not alter the commit behavior when SQL*Plus exits. Any
uncommitted data is committed by default.

Note:

For this feature, a PL/SQL block is considered one transaction, regardless of
the actual number of SQL commands contained within it.

13.41.4 SET AUTOPRINT
Syntax

SET AUTOP[RINT] {ON | OFF}

Chapter 13
SET System Variable Summary

13-79

Sets the automatic printing of bind variables.

ON or OFF controls whether SQL*Plus automatically displays bind variables
(referenced in a successful PL/SQL block or used in an EXECUTE command).

See PRINT for more information about displaying bind variables.

13.41.5 SET AUTORECOVERY
Syntax

SET AUTORECOVERY [ON | OFF]

ON sets the RECOVER command to automatically apply the default filenames of
archived redo log files needed during recovery.

No interaction is needed, provided the necessary files are in the expected locations
with the expected names. The filenames used are derived from the values of the
initialization parameters LOG_ARCHIVE_DEST and LOG_ARCHIVE_FORMAT.

OFF, the default option, requires that you enter the filenames manually or accept the
suggested default filename given. See RECOVER for more information about
database recovery.

Example

To set the recovery mode to AUTOMATIC, enter

SET AUTORECOVERY ON
RECOVER DATABASE

13.41.6 SET AUTOTRACE
Syntax

SET AUTOT[RACE] {ON | OFF | TRACE[ONLY]} [EXP[LAIN]] [STAT[ISTICS]]

Displays a report on the execution of successful SQL DML statements (such as
SELECT, INSERT, UPDATE, DELETE or MERGE).

The report can include execution statistics and the query execution path.

SQL*Plus report output may differ for DML if dynamic sampling is in effect.

OFF does not display a trace report. ON displays a trace report. TRACEONLY
displays a trace report, but does not print query data, if any. EXPLAIN shows the
query execution path by performing an EXPLAIN PLAN. STATISTICS displays SQL
statement statistics. See EXPLAIN PLAN for more information about EXPLAIN PLAN.

Using ON or TRACEONLY with no explicit options defaults to EXPLAIN STATISTICS.

The TRACEONLY option may be useful to suppress the query data of large queries. If
STATISTICS is specified, SQL*Plus still fetches the query data from the server,
however, the data is not displayed.

The AUTOTRACE report is printed after the statement has successfully completed.

Chapter 13
SET System Variable Summary

13-80

When SQL*Plus produces a STATISTICS report, a second connection to the database
is automatically created. This connection is closed when the STATISTICS option is set
to OFF, or you log out of SQL*Plus.

The formatting of your AUTOTRACE report may vary depending on the version of the
server to which you are connected and the configuration of the server. The additional
information and tabular output of AUTOTRACE PLAN is supported when connecting to
Oracle Database 10g (Release 10.1) or later. When you connect to an earlier
database, the older form or AUTOTRACE reporting is used.

AUTOTRACE is not available when FIPS flagging is enabled.

See About Tracing Statements for more information on AUTOTRACE.

13.41.7 SET BLOCKTERMINATOR
Syntax

SET BLO[CKTERMINATOR] {. | c | ON | OFF}

Sets the character used to end PL/SQL blocks to c.

It cannot be an alphanumeric character or a whitespace. To execute the block, you
must issue a RUN or / (slash) command.

OFF means that SQL*Plus recognizes no PL/SQL block terminator. ON changes the
value of c back to the default period (.), not the most recently used character.

13.41.8 SET CMDSEP
Syntax

SET CMDS[EP] {; | c | ON | OFF}

Sets the non-alphanumeric character used to separate multiple SQL*Plus commands
entered on one line to c.

ON or OFF controls whether you can enter multiple commands on a line. ON
automatically sets the command separator character to a semicolon (;).

Example

To specify a title with TTITLE and format a column with COLUMN, both on the same
line, enter

SET CMDSEP +
TTITLE LEFT 'SALARIES' + COLUMN SALARY FORMAT $99,999
SELECT LAST_NAME, SALARY FROM EMP_DETAILS_VIEW
WHERE JOB_ID = 'SH_CLERK';

SALARIES
LAST_NAME SALARY
------------------------- --------
Taylor $3,200
Fleaur $3,100

Chapter 13
SET System Variable Summary

13-81

Sullivan $2,500
Geoni $2,800
Sarchand $4,200
Bull $4,100
Dellinger $3,400
Cabrio $3,000
Chung $3,800
Dilly $3,600
Gates $2,900
Perkins $2,500
Bell $4,000
Everett $3,900
McCain $3,200
Jones $2,800

SALARIES
LAST_NAME SALARY
------------------------- --------
Walsh $3,100
Feeney $3,000
OConnell $2,600
Grant $2,600

20 rows selected.

13.41.9 SET COLINVISIBLE
Syntax

SET COLINVI[SIBLE] [ON | OFF]

ON sets the DESCRIBE command to enable the display of information about an
invisible column.

SET COLINVISIBLE has no effect on query statments that contain invisible columns.
To retrieve data in an invisible column, explicitly specify the column in your query.

Example

To view information about an invisible column with the DESCRIBE command.

Create a table with an invisible column.

create table test_invisible_cols (emp_id number, emp_info char(20),
 emp_acc_no number invisible);

Table created.

Use the DESCRIBE command to list the table columns.

describe test_invisible_cols

Name Null? Type
--- -------- -----------------------

Chapter 13
SET System Variable Summary

13-82

EMP_ID NUMBER
EMP_INFO CHAR(20)

Note that with the default SET COLINVISIBLE OFF, the invisible column does not
appear in the result. Change the default setting of SET COLINVISIBLE to ON.

SET COLINVISIBLE ON

colinvisible ON

Now use the DESCRIBE command again to list the table columns. The invisible
column now appears in the output.

describe test_invisible_cols

Name Null? Type
--- -------- -----------------------
EMP_ID NUMBER
EMP_INFO CHAR(20)
EMP_ACC_NO(INVISIBLE) NUMBER

13.41.10 SET COLSEP
Syntax

SET COLSEP { | text}

Sets the column separator character printed between columns in output.

If the COLSEP variable contains blanks or punctuation characters, you must enclose it
with single quotes. The default value for text is a single space.

In multi-line rows, the column separator does not print between columns that begin on
different lines. The column separator does not appear on blank lines produced by
BREAK ... SKIP n and does not overwrite the record separator. See SET RECSEP
{WR[APPED] | EA[CH] | OFF} for more information.

Example

To set the column separator to "|" enter

SET MARKUP HTML PREFORMAT ON
SET COLSEP '|'
SELECT LAST_NAME, JOB_ID, DEPARTMENT_ID
FROM EMP_DETAILS_VIEW
WHERE DEPARTMENT_ID = 20;

LAST_NAME	JOB_ID	DEPARTMENT_ID
Hartstein |MK_MAN | 20
Fay |MK_REP | 20

Chapter 13
SET System Variable Summary

13-83

13.41.11 SET CONCAT
Syntax

SET CON[CAT] {. | c | ON | OFF}

Sets the character used to terminate a substitution variable reference when SQL*Plus
would otherwise interpret the next character as a part of the variable name.

SQL*Plus resets the value of CONCAT to a period when you switch CONCAT on.

13.41.12 SET COPYCOMMIT
Syntax

SET COPYC[OMMIT] {0 | n}

Controls the number of rows after which the COPY command commits changes to the
database.

COPY commits rows to the destination database each time it copies n row batches.
Valid values are zero to 5000. You can set the size of a batch with the ARRAYSIZE
variable. If you set COPYCOMMIT to zero, COPY performs a commit only at the end
of a copy operation.

13.41.13 SET COPYTYPECHECK
Syntax

SET COPYTYPECHECK {ON | OFF}

Sets the suppression of the comparison of datatypes while inserting or appending to
tables with the COPY command.

This is to facilitate copying to DB2, which requires that a CHAR be copied to a DB2
DATE.

13.41.14 SET DEFINE
Syntax

SET DEF[INE] {& | c | ON | OFF}

Sets the character used to prefix substitution variables to c.

ON or OFF controls whether SQL*Plus will scan commands for substitution variables
and replace them with their values. ON changes the value of c back to the default '&',
not the most recently used character. The setting of DEFINE to OFF overrides the
setting of the SCAN variable.

Chapter 13
SET System Variable Summary

13-84

See SET SCAN {ON|OFF} (obsolete) for more information on the SCAN variable.

13.41.15 SET DESCRIBE
Syntax

SET DESCRIBE [DEPTH {1 | n | ALL}] [LINENUM {ON | OFF}] [INDENT {ON | OFF}]

Sets the depth of the level to which you can recursively describe an object.

The valid range of the DEPTH clause is from 1 to 50. If you SET DESCRIBE DEPTH
ALL, then the depth will be set to 50, which is the maximum level allowed. You can
also display the line number and indentation of the attribute or column name when an
object contains multiple object types. Use the SET LINESIZE command to control the
width of the data displayed.

See DESCRIBE for more information about describing objects.

Example

To create an object type ADDRESS, enter

CREATE TYPE ADDRESS AS OBJECT
 (STREET VARCHAR2(20),
 CITY VARCHAR2(20)
);
/

Type created

To create the table EMPLOYEE that contains a nested object, EMPADDR, of type
ADDRESS, enter

CREATE TABLE EMPLOYEE
 (LAST_NAME VARCHAR2(30),
 EMPADDR ADDRESS,
 JOB_ID VARCHAR2(20),
 SALARY NUMBER(7,2)
);
/

Table created

To describe the table EMPLOYEE to a depth of two levels, and to indent the output
and display line numbers, enter:

SET DESCRIBE DEPTH 2 LINENUM ON INDENT ON
DESCRIBE employee

 Name Null? Type
 ------------------------------- -------- --------------------------
1 LAST_NAME VARCHAR2(30)
2 EMPADDR ADDRESS
3 2 STREET VARCHAR2(20)
4 2 CITY VARCHAR2(20)

Chapter 13
SET System Variable Summary

13-85

5 JOB_ID VARCHAR2(20)
6 SALARY NUMBER(7,2)

13.41.16 SET ECHO
Syntax

SET ECHO {ON | OFF}

Controls whether or not to echo commands in a script that is executed with @, @@ or
START. ON displays the commands on screen. OFF suppresses the display. ECHO
does not affect the display of commands you enter interactively or redirect to
SQL*Plus from the operating system.

13.41.17 SET EDITFILE
Syntax

SET EDITF[ILE] file_name[.ext]

Sets the default filename for the EDIT command. See EDIT for more information about
the EDIT command. The default filename for the EDIT command is afiedt.buf which is
the SQL buffer.

You can include a path and/or file extension. See SET SUF[FIX] {SQL | text} for
information on changing the default extension. The default filename and maximum
filename length are operating system specific.

13.41.18 SET EMBEDDED
Syntax

SET EMB[EDDED] {ON | OFF}

Controls where on a page each report begins.

OFF forces each report to start at the top of a new page. ON enables a report to begin
anywhere on a page. Set EMBEDDED to ON when you want a report to begin printing
immediately following the end of the previously run report.

13.41.19 SET ERRORLOGGING
Syntax

SET ERRORL[OGGING] {ON | OFF} [TABLE [schema.]tablename] [TRUNCATE]
[IDENTIFIER identifier]

Turns SQL*Plus error logging ON or OFF. Error logging records SQL, PL/SQL and
SQL*Plus errors and associated parameters in an error log table. You can then query

Chapter 13
SET System Variable Summary

13-86

the log table to review errors resulting from a query. When error logging is ON, errors
are recorded whether the query is run interactively or from a script. This is particularly
useful for capturing errors generated from long running queries and avoids capturing
all output using the SPOOL command, or having to remain present during the run.

By default, errors are written to a the table SPERRORLOG in your schema. If this
table does not exist, it is created automatically. You can also use the TABLE
schema.tablename option to specify other tables to use. When using a table other than
SPERRORLOG, it must already exist, and you must have access to it. See Creating a
User Defined Error Log Table.

If an internal error occurs, to avoid recursion errors caused by the errorlog calling
itself, errorlogging is automatically set OFF.

Error logging is set OFF by default.

ON

Writes ORA, PLS and SP2 errors to the default table, SPERRORLOG.

OFF

Disables error .

TABLE [schema.]tablename

Specifies a user defined table to use instead of the default, SPERRORLOG. If you
omit schema. the table is created in the current schema. The table you specify must
exist, and you must have access permissions.

If the table specified does not exist, or you do not have access, an error message is
displayed and the default table, SPERRORLOG, is used.

TRUNCATE

Clears all existing rows in the error log table and begins recording errors from the
current session.

IDENTIFIER identifier

A user defined string to identify errors. You can use it to identify errors from a
particular session or from a particular version of a query.

Creating a User Defined Error Log Table

You can create one or more error log tables to use other than the default. Before
specifying a user defined error log table with the TABLE schema.tablename option,
you must create it and ensure that you have permissions to access it. The error log
table has the following column definitions:

Table 13-4 SQL*Plus Error Log Column Definitions

Column Type Description

username VARCHAR(256) Oracle account name.

timestamp TIMESTAMP Time when the error occurred.

script VARCHAR(1024) Name of the originating script if applicable.

identifier VARCHAR(256) User defined identifier string.

Chapter 13
SET System Variable Summary

13-87

Table 13-4 (Cont.) SQL*Plus Error Log Column Definitions

Column Type Description

message CLOB ORA, PLA or SP2 error message. No feed back messages are
included. For example, "PL/SQL Block Created" is not
recorded.

statement CLOB The statement causing the error.

Using User Defined Error Log Tables

To use a user defined log table, you must have permission to access the table, and
you must issue the SET ERRORLOGGING command with the TABLE
schema.tablename option to identify the error log table and the schema if applicable.

Querying Error Log Tables

To view the records recorded in an error log table, you query the columns you want to
view as for any table. The columns available are shown in Table 13-4.

Example

To use the default error log table to record query errors from a script, myfile.sql, which
contains the following:

VARIABLE U REFCURSOR
BEGIN
 OPEN :U FOR SELECT * FROM DEPT;
END;
/

SHOW ERRORS PROCEDURE 'SSS'

SET GARBAGE

SELECT *
FROM
GARBAGE
;

Enter the following:

SET ERRORLOGGING ON
@myfile

which produces the following output:

open :u for select * from dept;
 *
ERROR at line 2:
ORA-6550: line 2, column 29:
PLS-00201: ORA-00942: table or view does not exist
ORA-6550: line 2, column 16:
PL/SQL: SQL Statement ignored

ERROR:
ORA-00907: missing right parenthesis

Chapter 13
SET System Variable Summary

13-88

SP2-0158: unknown SET option "garbage"

garbage
*
ERROR at line 3:
ORA-00942: table or view does not exist

To view the errror log written to the default error log table, SPERRORLOG, enter:

SELECT TIMESTAMP, USERNAME, SCRIPT, IDENTIFIER, STATEMENT, MESSAGE
FROM SPERRORLOG;

which produces the following output:

TIMESTAMP USERNAME SCRIPT IDENTIFIER STATEMENT MESSAGE

Mon May 08
21:30:03 2006

SYSTEM d:\myfile.sql open :u for
select * from
dept;

ORA-06550: line 2,
column 27:

Mon May 08
21:30:05 2006

SYSTEM d:\myfile.sql open :u for
select * from
dept;

PL/SQL: ORA-00942:
table or view does not
exist

Mon May 08
21:30:05 2006

SYSTEM d:\myfile.sql open :u for
select * from
dept;

ORA-06550: line 2,
column 13:

Mon May 08
21:30:05 2006

SYSTEM d:\myfile.sql open :u for
select * from
dept;

PL/SQL: SQL Statement
ignored

Mon May 08
21:30:06 2006

SYSTEM d:\myfile.sql show errors
procedure "sss"

ORA-00907: missing right
parenthesis

Mon May 08
21:30:09 2006

SYSTEM d:\myfile.sql set garbage SP2-0158: unknown SET
option "garbage"

Mon May 08
21:30:10 2006

SYSTEM d:\myfile.sql garbage ORA-00942: table or view
does not exist

Example 2

To use a user defined error log table to record query errors from a script, myfile.sql,
which contains the following:

VARIABLE U REFCURSOR
BEGIN
 OPEN :U FOR SELECT * FROM DEPT;
END;
/

SHOW ERRORS PROCEDURE 'SSS'

SET GARBAGE

SELECT *
FROM
GARBAGE
;

Chapter 13
SET System Variable Summary

13-89

Enter the following:

SET ERRORLOGGING ON
@MYFILE

which produces the following output:

open :u for select * from dept;
 *
ERROR at line 2:
ORA-6550: line 2, column 29:
PLS-00201: ORA-00942: table or view does not exist
ORA-6550: line 2, column 16:
PL/SQL: SQL Statement ignored

ERROR:
ORA-00907: missing right parenthesis

SP2-0158: unknown SET option "garbage"

garbage
*
ERROR at line 3:
ORA-00942: table or view does not exist

To view the errror log written to the default error log table, SPERRORLOG, enter:

SELECT TIMESTAMP, USERNAME, SCRIPT, IDENTIFIER, STATEMENT, MESSAGE
FROM SPERRORLOG;

which produces the following output:

TIMESTAMP USERNAME SCRIPT IDENTIFIER STATEMENT MESSAGE

Mon May 08
21:30:03 2006

SYSTEM d:\myfile.sql open :u for
select * from
dept;

ORA-06550: line 2,
column 27:

Mon May 08
21:30:05 2006

SYSTEM d:\myfile.sql open :u for
select * from
dept;

PL/SQL: ORA-00942:
table or view does not
exist

Mon May 08
21:30:05 2006

SYSTEM d:\myfile.sql open :u for
select * from
dept;

ORA-06550: line 2,
column 13:

Mon May 08
21:30:05 2006

SYSTEM d:\myfile.sql open :u for
select * from
dept;

PL/SQL: SQL Statement
ignored

Mon May 08
21:30:06 2006

SYSTEM d:\myfile.sql show errors
procedure "sss"

ORA-00907: missing right
parenthesis

Mon May 08
21:30:09 2006

SYSTEM d:\myfile.sql set garbage SP2-0158: unknown SET
option "garbage"

Mon May 08
21:30:10 2006

SYSTEM d:\myfile.sql garbage ORA-00942: table or view
does not exist

Chapter 13
SET System Variable Summary

13-90

Example 3

To use an error log table other than the default:

• Create the error log table you want to use

• Specify the table you want to use with the TABLE option of the SET
ERRORLOGGING ON command.

The error log table must have the column definitions defined in Table 13-4.

John wants to use an error log table named john_sperrorlog. John would run the
following SQL statements to create the new error log table:

DROP TABLE john_sperrorlog;
CREATE TABLE john_sperrorlog(username VARCHAR(256),
timestamp TIMESTAMP,
script VARCHAR(1024),
identifier VARCHAR(256),
message CLOB,
statement CLOB);

Removed Commit from previous example from user comment giridhar123 14Feb08

John then issues the following SET command to enable error logging using the newly
created error log table

SET ERRORLOGGING ON TABLE john_sperrorlog

All error logging for John is now recorded to john_sperrorlog, and not to the default
error log table, SPERRORLOG.

Access privileges for the error log table are handled in the same way as for any user
table.

13.41.20 SET ESCAPE
Syntax

SET ESC[APE] {\ | c | ON | OFF}

Defines the character used as the escape character.

OFF undefines the escape character. ON enables the escape character. ON changes
the value of c back to the default "\".

You can use the escape character before the substitution character (set through SET
DEFINE) to indicate that SQL*Plus should treat the substitution character as an
ordinary character rather than as a request for variable substitution.

Example

If you define the escape character as an exclamation point (!), then

SET ESCAPE !
ACCEPT v1 PROMPT 'Enter !&1:'

Chapter 13
SET System Variable Summary

13-91

displays this prompt:

Enter &1:

To set the escape character back to the default value of \ (backslash), enter

SET ESCAPE ON

13.41.21 SET ESCCHAR
Syntax

SET ESCCHAR {@ | ? | % | OFF}

Specifies a character to be escaped and not interpreted when used in a file name for
the SPOOL, START, @, RUN and EDIT commands. These special characters are
translated to the following:

• @ in a filename will be translated to Oracle SID

• ? is translated to Oracle Home in Unix

• % is translated to Oracle Home in Windows

While it is not recommended that these characters are used in filenames, if you have
legacy files that do use them, it might be useful to include a SET ESCCHAR command
in your GLogin file to implement it across your site.

If not escaped, the characters @, ? and % have significance when interpreted and
cause errors for the SPOOL, START, @, RUN and EDIT commands.

SET ESCCHAR is set OFF by default.

Note:

Starting from Oracle Database release 19c, version 19.3, file names with
the $ character will no longer run on Windows.

13.41.22 SET EXITCOMMIT
Syntax

SET EXITC[OMMIT] {ON | OFF}

Specifies whether the default EXIT behavior is COMMIT or ROLLBACK.

The default setting is ON, which means that work is committed on exit, whether you
expected it to be committed or not. Set EXITCOMMIT OFF to rollback work on exit.

Table 13-5 shows the exit action associated with combinations of SET commands
(AUTOCOMMIT & EXITCOMMIT) and the EXIT command.

Chapter 13
SET System Variable Summary

13-92

Table 13-5 Exit Behavior: AUTOCOMMIT, EXITCOMMIT, EXIT

AUTOCOMMIT EXITCOMMIT EXIT Exit Behavior

ON ON - COMMIT

ON OFF - COMMIT

OFF ON - COMMIT

OFF OFF - ROLLBACK

ON ON COMMIT COMMIT

ON ON ROLLBACK COMMIT

ON OFF COMMIT COMMIT

ON OFF ROLLBACK COMMIT

OFF ON COMMIT COMMIT

OFF ON ROLLBACK ROLLBACK

OFF OFF COMMIT COMMIT

OFF OFF ROLLBACK ROLLBACK

13.41.23 SET FEEDBACK
Syntax

SET FEED[BACK] {6 | n | ON | OFF | ONLY} [SQL_ID]

Displays the number of records returned by a script when a script selects at least n
records.

ON or OFF turns this display on or off. Turning feedback ON sets n to 1. Setting
feedback to zero is equivalent to turning it OFF. The feedback message is not
displayed while the data is displayed.

SET FEEDBACK OFF also turns off the statement confirmation messages such as
'Table created' and 'PL/SQL procedure successfully completed' that are displayed after
successful SQL or PL/SQL statements.

ONLY returns the number of rows selected by a query without displaying data.

SQL_ID returns the sql_id for the SQL or PL/SQL statements that are executed. The
sql_id will be assigned to the predefined variable _SQL_ID. You can use this
predefined variable to debug the SQL statement that was executed. The variable can
be used like any other predefined variable, such as _USER and _DATE.

SQL> SET FEEDBACK ON SQL_ID
SQL> SELECT * FROM DUAL;

D
-
X

1 row selected.

SQL_ID: a5ks9fhw2v9s1
SQL> COLUMN sql_text FORMAT a50

Chapter 13
SET System Variable Summary

13-93

SQL> SELECT sql_text FROM v$sql WHERE sql_id = '&_sql_id';

SQL_TEXT

SELECT * FROM DUAL

1 row selected.

SQL_ID: cf9bgxbfytv5b

When the SQL_ID option is specified and feedback is ON, you see the sql id displayed
along with the feedback message. When feedback is OFF, only the sql id is displayed.

Example

To enable SET FEEDBACK ONLY, enter

SQL> SET FEEDBACK ONLY
SQL> SHOW FEEDBACK
feedback ONLY
SQL> SELECT * FROM EMP;

14 rows selected.

To enable SET_FEEDBACK and SQL_ID enter

SQL> SET FEEDBACK ON SQL_ID
SQL> SELECT * FROM DEPT;

DEPTNO DNAME LOC
-------------- ------------------- ---------------------
 10 ACCOUNTING NEW YORK
 20 RESEARCH DALLAS
 30 SALES CHICAGO
 40 OPERATIONS BOSTON

4 rows selected.

SQL_ID: 3154rqzb8xudy
SQL> CONNECT SYSTEM
ENTER PASSWORD:
Connected.
SQL> COLUMN sql_text FORMAT a50
SQL> SELECT sql_text FROM v$sql WHERE sql_id = '&_sql_id';

SQL_TEXT

SELECT * FROM DEPT

1 row selected.
SQL_ID: 81a5n8q6g2vvr

13.41.24 SET FLAGGER
Syntax

SET FLAGGER {OFF | ENTRY | INTERMED[IATE] | FULL}

Checks to make sure that SQL statements conform to the ANSI/ISO SQL92 standard.

Chapter 13
SET System Variable Summary

13-94

If any non-standard constructs are found, the Oracle Database Server flags them as
errors and displays the violating syntax. This is the equivalent of the SQL language
ALTER SESSION SET FLAGGER command.

You may execute SET FLAGGER even if you are not connected to a database. FIPS
flagging will remain in effect across SQL*Plus sessions until a SET FLAGGER OFF (or
ALTER SESSION SET FLAGGER = OFF) command is successful or you exit
SQL*Plus.

When FIPS flagging is enabled, SQL*Plus displays a warning for the CONNECT,
DISCONNECT, and ALTER SESSION SET FLAGGER commands, even if they are
successful.

13.41.25 SET FLUSH
Syntax

SET FLU[SH] {ON | OFF}

Controls when output is sent to the user's display device. OFF enables the operating
system to buffer output. ON disables buffering. FLUSH only affects display output, it
does not affect spooled output.

Use OFF only when you run a script non-interactively (that is, when you do not need to
see output and/or prompts until the script finishes running). The use of FLUSH OFF
may improve performance by reducing the amount of program I/O.

13.41.26 SET HEADING
Syntax

SET HEA[DING] {ON | OFF}

Controls printing of column headings in reports.

ON prints column headings in reports; OFF suppresses column headings.

The SET HEADING OFF command does not affect the column width displayed, it only
suppresses the printing of the column header itself.

Example

To suppress the display of column headings in a report, enter

SET HEADING OFF

If you then run a SQL SELECT command

SELECT LAST_NAME, SALARY
FROM EMP_DETAILS_VIEW
WHERE JOB_ID = 'AC_MGR';

the following output results:

Higgins 12000

Chapter 13
SET System Variable Summary

13-95

To turn the display of column headings back on, enter

SET HEADING ON

13.41.27 SET HEADSEP
Syntax

SET HEADS[EP] { | c | ON | OFF}

Defines the character used as a line break in column headings.

The heading separator character cannot be alphanumeric or white space. You can use
the heading separator character in the COLUMN command and in the old forms of
BTITLE and TTITLE to divide a column heading or title onto more than one line. ON or
OFF turns heading separation on or off. When heading separation is OFF, SQL*Plus
prints a heading separator character like any other character. ON changes the value of
c back to the default "|".

13.41.28 SET HISTORY

Syntax

SET HIST[ORY] {ON | OFF | n}

Enables or disables the history of commands. When enabled, SQL*Plus, SQL and
PL/SQL statements are stored in the command history list. You can recall SQL*Plus,
SQL and PL/SQL statements by using the HISTORY command.

Examples

To enable command history and store 200 entries in the list, enter

SET HIST[ORY] 200

If you do not specify a value for n, the default is 100.

Note:

Multiline entries such as PL/SQL blocks are considered as one single entry
in the command history list. You can store up to 100000 commands in
command history. If you try to enable command history while it is already
enabled, the old command history is cleared.

13.41.29 SET INSTANCE
Syntax

SET INSTANCE [instance_path | LOCAL]

Chapter 13
SET System Variable Summary

13-96

Changes the default instance for your session to the specified instance path.

Using the SET INSTANCE command does not connect to a database. The default
instance is used for commands when no instance is specified. Any commands
preceding the first use of SET INSTANCE communicate with the default instance.

To reset the instance to the default value for your operating system, you can either
enter SET INSTANCE with no instance_path or SET INSTANCE LOCAL.

Note, you can only change the instance when you are not currently connected to any
instance. That is, you must first make sure that you have disconnected from the
current instance, then set or change the instance, and reconnect to an instance in
order for the new setting to be enabled.

This command may only be issued when Oracle Net is running. You can use any valid
Oracle Net connect identifier as the specified instance path. See your operating
system-specific Oracle Database documentation for a complete description of how
your operating system specifies Oracle Net connect identifiers. The maximum length
of the instance path is 64 characters.

Example

To set the default instance to "PROD1" enter

DISCONNECT
SET INSTANCE PROD1

To set the instance back to the default of local, enter

SET INSTANCE local

You must disconnect from any connected instances to change the instance.

13.41.30 SET JSONPRINT

Syntax

SET JSONPRINT [NORMAL] [PRETTY] [ASCII]

Formats the output of JSON type columns.

Starting with Release 20c, JSON is a new SQL and PL/SQL data type for JSON data.
For more information about JSON, see Getting Started with JSON.

PRETTY displays a formatted JSON output with proper alignment and spacing.

ASCII displays non-ASCII characters as Unicode escape sequences.

NORMAL is the default value and clears the PRETTY and ASCII parameters.

Example

To enable pretty printing for JSON data, enter:

SQL> set jsonprint pretty
SQL> show jsonprint
jsonprint PRETTY

Chapter 13
SET System Variable Summary

13-97

SQL> select json('[{a:"\u20ac"},{b:"value"}]') from dual;
JSON('[{A:"\U20AC"},{B:"VALUE"}]')

[
 {
 "a" : "�"
 },
 {
 "b" : "value"
 }
]

The result has a non-ASCII character. If ASCII is enabled, the output is as follows:

SQL> set jsonprint pretty ascii
SQL> show jsonprint
jsonprint PRETTY ASCII

SQL> select json('[{a:"\u20ac"},{b:"value"}]') from dual;
JSON('[{A:"\U20AC"},{B:"VALUE"}]')

[
 {
 "a" : "\u20AC"
 },
 {
 "b" : "value"
 }
]

13.41.31 SET LINESIZE
Syntax

SET LIN[ESIZE] {80 | n | WINDOW}

Sets the total number of characters that SQL*Plus displays on one line before
beginning a new line.

It also controls the position of centered and right-aligned text in TTITLE, BTITLE,
REPHEADER and REPFOOTER. Changing the linesize setting can affect text
wrapping in output from the DESCRIBE command. DESCRIBE output columns are
typically allocated a proportion of the linesize. Decreasing or increasing the linesize
may give unexpected text wrapping in your display. You can define LINESIZE as a
value from 1 to a maximum that is system dependent.

WINDOW adjusts the linesize and pagesize for the formatted output according to the
width and height of the screen. If the output is longer than the screen width, then the
output is wrapped accordingly.

Chapter 13
SET System Variable Summary

13-98

If the screen size is manually set by using the SET LINESIZE n command, the
subsequent output will be displayed to fit the new linesize.

Note:

The SET LINESIZE WINDOW command is ignored in a script and the output
will not be displayed according to the screen size.

Example

To set the linesize for the output to 20, enter

SQL> SET LINESIZE 20
SQL> SHOW LINESIZE
linesize 20

To dynamically change the output display after manually resizing the screen, enter

SQL> SET LINESIZE Window
SQL> SHOW LINESIZE
linesize 160 WINDOW

13.41.32 SET LOBOFFSET
Syntax

SET LOBOF[FSET] {1 | n}

Sets the starting position from which BLOB, BFILE, CLOB and NCLOB data is
retrieved and displayed.

Example

To set the starting position from which a CLOB column's data is retrieved to the 22nd
position, enter

SET LOBOFFSET 22

The CLOB data will wrap on your screen; SQL*Plus will not truncate until the 23rd
character.

13.41.33 SET LOBPREFETCH

Syntax

SET LOBPREFETCH {0 | n}

Sets the amount of LOB data (in bytes) that SQL*Plus will prefetch from the database
at one time.

Chapter 13
SET System Variable Summary

13-99

Example

To set the amount of prefetched LOB data to 8000 bytes, enter

SET LOBPREFETCH 8000

If you do not specify a value for n, the default is 0. This means that LOB data
prefetching is off.

Note:

You can specify a maximum value of 2147483648 bytes (2 Gigabytes). The
settings in the oraaccess.xml file can override the SET LOBPREFETCH
setting in SQL*Plus. For more information about oraaccess.xml, see the
Oracle Call Interface Programmer's Guide.

To show the current setting for the amount of LOB data that SQL*Plus will prefetch
from the database at one time, enter

SHOW LOBPREF[ETCH]

13.41.34 SET LOGSOURCE
Syntax

SET LOGSOURCE [pathname]

Specifies the location from which archive logs are retrieved during recovery.

The default value is set by the LOG_ARCHIVE_DEST initialization parameter in the
Oracle Database initialization file, init.ora. Using the SET LOGSOURCE command
without a pathname restores the default location.

Example

To set the default location of log files for recovery to the directory "/usr/oracle10/dbs/
arch" enter

SET LOGSOURCE "/usr/oracle10/dbs/arch"
RECOVER DATABASE

13.41.35 SET LONG
Syntax

SET LONG {80 | n}

Sets maximum width (in bytes) for displaying BLOB, BFILE, CLOB, LONG, NCLOB
and XMLType values; and for copying LONG values.

Starting with the release 20c, JSONPRINT can be used with SET LONG to set the
maximum width for displaying JSON values.

Chapter 13
SET System Variable Summary

13-100

Querying LONG columns requires enough local memory to store the amount of data
specified by SET LONG, irrespective of the value of the SET LONGCHUNKSIZE
command. This requirement does not apply when querying LOBs.

It is recommended that you do not create tables with LONG columns. LONG columns
are supported only for backward compatibility. Use LOB columns (BLOB, BFILE,
CLOB, NCLOB) instead. LOB columns have fewer restrictions than LONG columns
and are still being enhanced.

The maximum value of n is 2,000,000,000 bytes. It is important to check that the
memory required by your SET LONG command is available on your machine, for
example:

SET LONG 2000000000

assumes that available RAM (random access memory) on the machine exceeds 2
gigabytes.

Example

To set the maximum number of bytes to fetch for displaying and copying LONG
values, to 500, enter

SET LONG 500

The LONG data will wrap on your screen; SQL*Plus will not truncate until the 501st
byte. The default for LONG is 80 bytes.

13.41.36 SET LONGCHUNKSIZE
Syntax

SET LONGC[HUNKSIZE] {80 | n}

Sets the size (in bytes) of the increments SQL*Plus uses to retrieve a BLOB, BFILE,
CLOB, LONG, NCLOB or XMLType value.

LONGCHUNKSIZE is not used for object relational queries such as CLOB, or NCLOB.

Example

To set the size of the increments in which SQL*Plus retrieves LONG values to 100
bytes, enter

SET LONGCHUNKSIZE 100

The LONG data will be retrieved in increments of 100 bytes until the entire value is
retrieved or the value of SET LONG is reached, whichever is the smaller.

13.41.37 SET MARKUP
Syntax

SET MARK[UP] markup_option

where markup_option consists of:

Chapter 13
SET System Variable Summary

13-101

• csv_option

• html_option

where csv_option has the following syntax:

CSV {ON|OFF} [DELIMI[TER] character] [QUOTE {ON|OFF}]

where html_option has the following syntax:

HTML {ON|OFF} [HEAD text] [BODY text] [TABLE text] [ENTMAP {ON|OFF}] [SPOOL {ON|
OFF}] [PRE[FORMAT] {ON|OFF}]

csv_option

Outputs reports in CSV format.

To be effective, SET MARKUP commands that change values in dynamic report
output must be issued before the statement that produces the query output. The first
statement that produces the query output triggers the output of CSV data that reflects
the DELIMITER and QUOTE settings.

CSV is a mandatory SET MARKUP argument which specifies the type of output to be
generated is CSV. The optional CSV arguments, ON and OFF, specify whether or not
to generate CSV output. The default is OFF.

You can turn CSV output ON and OFF as required during a session.

DELIMI[TER] character

The DELIMI[TER] character option enables you to specify a column separator
character.

QUOTE {ON|OFF}

The QUOTE {ON|OFF} option enables you to turn text quoting on or off. The default is
OFF.

QUOTE ON generates CSV output with all text quoted. Double quotes (“ ”) embedded
within text are escaped.

You can turn quoted text ON and OFF as required during a session.

Supported Commands when SET MARKUP CSV is Enabled

If enabled, the following COLUMN commands will remain effective when SET
MARKUP CSV is enabled:

• COLUMN FORMAT

• COLUMN HEADING

• COLUMN NULL

Unsupported Commands when SET MARKUP CSV is Enabled

When SET MARKUP CSV is enabled, the following SQL*Plus commands will have no
effect on the output:

• BREAK

Chapter 13
SET System Variable Summary

13-102

• BTITLE

• COMPUTE

• REPFOOTER

• REPHEADER

When SET MARKUP CSV is enabled, the following SET commands will have no effect
on the output:

• SET COLSEP

• SET HEADSEP

• SET LINESIZE

• SET NEWPAGE

• SET PAGESIZE

• SET PAUSE

• SET RECSEP

• SET SHIFTINOUT

• SET TAB

• SET TRIMOUT

• SET TRIMSPOOL

• SET UNDERLINE

• SET WRAP

When SET MARKUP CSV is enabled, the following COLUMN commands will have no
effect on the output:

• COLUMN ENTMAP

• COLUMN FOLD_AFTER

• COLUMN FOLD_BEFORE

• COLUMN JUSTIFY

• COLUMN NEWLINE

• COLUMN NEW_VALUE

• COLUMN NOPRINT

• COLUMN OLD_VALUE

• COLUMN WRAP

Use the SHOW MARKUP command to view the status of MARKUP options.

Example

The following example illustrates the output when SET MARKUP CSV is enabled:

SQL> SET MARKUP CSV ON
SQL> SELECT * FROM EMP;

"EMPNO","ENAME","JOB","MGR","HIREDATE","SAL","COMM","DEPTNO"
7369,"SMITH","CLERK",7902,"17-DEC-80",800,,20
7499,"ALLEN","SALESMAN",7698,"20-FEB-81",1600,300,30

Chapter 13
SET System Variable Summary

13-103

7521,"WARD","SALESMAN",7698,"22-FEB-81",1250,500,30
7566,"JONES","MANAGER",7839,"02-APR-81",2975,,20
7654,"MARTIN","SALESMAN",7698,"28-SEP-81",1250,1400,30
7698,"BLAKE","MANAGER",7839,"01-MAY-81",2850,,30
7782,"CLARK","MANAGER",7839,"09-JUN-81",2450,,10
7788,"SCOTT","ANALYST",7566,"19-APR-87",3000,,20
7839,"KING","PRESIDENT",,"17-NOV-81",5000,,10
7844,"TURNER","SALESMAN",7698,"08-SEP-81",1500,0,30
7876,"ADAMS","CLERK",7788,"23-MAY-87",1100,,20
7900,"JAMES","CLERK",7698,"03-DEC-81",950,,30
7902,"FORD","ANALYST",7566,"03-DEC-81",3000,,20
7934,"MILLER","CLERK",7782,"23-JAN-82",1300,,10

14 rows selected.

The following example illustrates how to extract all records from the Employee table of
the database, with text strings unquoted:

SQL> SET MARKUP CSV ON QUOTE OFF
SQL> SELECT * FROM EMP;

EMPNO,ENAME,JOB,MGR,HIREDATE,SAL,COMM,DEPTNO
7369,SMITH,CLERK,7902,17-DEC-80,800,,20
7499,ALLEN,SALESMAN,7698,20-FEB-81,1600,300,30
7521,WARD,SALESMAN,7698,22-FEB-81,1250,500,30
7566,JONES,MANAGER,7839,02-APR-81,2975,,20
7654,MARTIN,SALESMAN,7698,28-SEP-81,1250,1400,30
7698,BLAKE,MANAGER,7839,01-MAY-81,2850,,30
7782,CLARK,MANAGER,7839,09-JUN-81,2450,,10
7788,SCOTT,ANALYST,7566,19-APR-87,3000,,20
7839,KING,PRESIDENT,,17-NOV-81,5000,,10
7844,TURNER,SALESMAN,7698,08-SEP-81,1500,0,30
7876,ADAMS,CLERK,7788,23-MAY-87,1100,,20
7900,JAMES,CLERK,7698,03-DEC-81,950,,30
7902,FORD,ANALYST,7566,03-DEC-81,3000,,20
7934,MILLER,CLERK,7782,23-JAN-82,1300,,10

14 rows selected.

The following example illustrates the output with the pipe (|) character specified as
the delimiter:

SQL> SET MARKUP CSV ON DELIMITER |
SQL> SELECT * FROM EMP;

EMPNO|ENAME|JOB|MGR|HIREDATE|SAL|COMM|DEPTNO
7369|SMITH|CLERK|7902|17-DEC-80|800||20
7499|ALLEN|SALESMAN|7698|20-FEB-81|1600|300|30
7521|WARD|SALESMAN|7698|22-FEB-81|1250|500|30
7566|JONES|MANAGER|7839|02-APR-81|2975||20
7654|MARTIN|SALESMAN|7698|28-SEP-81|1250|1400|30
7698|BLAKE|MANAGER|7839|01-MAY-81|2850||30
7782|CLARK|MANAGER|7839|09-JUN-81|2450||10
7788|SCOTT|ANALYST|7566|19-APR-87|3000||20
7839|KING|PRESIDENT||17-NOV-81|5000||10
7844|TURNER|SALESMAN|7698|08-SEP-81|1500|0|30
7876|ADAMS|CLERK|7788|23-MAY-87|1100||20
7900|JAMES|CLERK|7698|03-DEC-81|950||30
7902|FORD|ANALYST|7566|03-DEC-81|3000||20
7934|MILLER|CLERK|7782|23-JAN-82|1300||10

Chapter 13
SET System Variable Summary

13-104

14 rows selected.

html_option

Outputs HTML marked up text.

To be effective, SET MARKUP commands that change values in dynamic report
output must occur before statements that produce query output. The first statement
that produces query output triggers the output of information affected by SET
MARKUP such as HEAD and TABLE settings. Subsequent SET MARKUP commands
have no effect on the information already sent to the report.

SET MARKUP only specifies that SQL*Plus output will be HTML encoded. You must
use SET MARKUP HTML ON SPOOL ON and the SQL*Plus SPOOL command to
create and name a spool file, and to begin writing HMTL output to it. SET MARKUP
has the same options and behavior as SQLPLUS -MARKUP.

See MARKUP Options for detailed information. For examples of usage, see
Generating HTML Reports from SQL*Plus.

Use the SHOW MARKUP command to view the status of MARKUP options.

Example

The following is a script which uses the SET MARKUP HTML command to enable
HTML marked up text to be spooled to a specified file:

Note:

The SET MARKUP example command is laid out for readability using line
continuation characters "–" and spacing. Command options are
concatenated in normal entry.

Use your favorite text editor to enter the commands necessary to set up the HTML
options and the query you want for your report.

SET MARKUP HTML ON SPOOL ON HEAD "<TITLE>SQL*Plus Report</title> -
<STYLE TYPE='TEXT/CSS'><!--BODY {background: ffffc6} --></STYLE>"
SET ECHO OFF
SPOOL employee.htm
SELECT FIRST_NAME, LAST_NAME, SALARY
FROM EMP_DETAILS_VIEW
WHERE SALARY>12000;
SPOOL OFF
SET MARKUP HTML OFF
SET ECHO ON

As this script contains SQL*Plus commands, do not attempt to run it with / (slash) from
the buffer because it will fail. Save the script in your text editor and use START to
execute it:

START employee.sql

As well as writing the HTML spool file, employee.htm, the output is also displayed on
screen because SET TERMOUT defaults to ON. You can view the spool file,
employee.htm, in your web browser. It should appear something like the following:

Chapter 13
SET System Variable Summary

13-105

13.41.38 SET NEWPAGE
Syntax

SET NEWP[AGE] {1 | n | NONE}

Sets the number of blank lines to be printed from the top of each page to the top title.
A value of zero places a formfeed at the beginning of each page (including the first
page) and clears the screen on most terminals. If you set NEWPAGE to NONE,
SQL*Plus does not print a blank line or formfeed between the report pages.

13.41.39 SET NULL
Syntax

SET NULL text

Sets the text displayed whenever a null value occurs in the result of a SQL SELECT
command.

Use the NULL clause of the COLUMN command to override the setting of the NULL
variable for a given column. The default output for a null is blank ("").

13.41.40 SET NUMFORMAT
Syntax

SET NUMF[ORMAT] format

Sets the default format for displaying numbers. See the FORMAT clause of the
COLUMN command for number format descriptions. Enter a number format for format.
To use the default field width and formatting model specified by SET NUMWIDTH,
enter

SET NUMFORMAT ""

Chapter 13
SET System Variable Summary

13-106

13.41.41 SET NUMWIDTH
Syntax

SET NUM[WIDTH] {10 | n}

Sets the default width for displaying numbers. See the FORMAT clause of the
COLUMN command for number format descriptions.

COLUMN FORMAT settings take precedence over SET NUMFORMAT settings, which
take precedence over SET NUMWIDTH settings.

13.41.42 SET PAGESIZE
Syntax

SET PAGES[IZE] {14 | n}

Sets the number of lines on each page of output. You can set PAGESIZE to zero to
suppress all headings, page breaks, titles, the initial blank line, and other formatting
information.

13.41.43 SET PAUSE
Syntax

SET PAU[SE] {ON | OFF | text}

Enables you to control scrolling of your terminal when running reports. You need to
first, SET PAUSE text, and then SET PAUSE ON if you want text to appear each time
SQL*Plus pauses.

SET PAUSE ON pauses output at the beginning of each PAGESIZE number of lines
of report output. Press Return to view more output. SET PAUSE text specifies the text
to be displayed each time SQL*Plus pauses. Multiple words in text must be enclosed
in single quotes.

You can embed terminal-dependent escape sequences in the PAUSE command.
These sequences allow you to create inverse video messages or other effects on
terminals that support such characteristics.

13.41.44 SET RECSEP
Syntax

SET RECSEP {WR[APPED] | EA[CH] | OFF}

RECSEP tells SQL*Plus where to make the record separation.

Chapter 13
SET System Variable Summary

13-107

For example, if you set RECSEP to WRAPPED, SQL*Plus prints a record separator
only after wrapped lines. If you set RECSEP to EACH, SQL*Plus prints a record
separator following every row. If you set RECSEP to OFF, SQL*Plus does not print a
record separator.

13.41.45 SET RECSEPCHAR
Syntax

SET RECSEPCHAR { | c}

Defines the character to display or print to separate records.

A record separator consists of a single line of the RECSEPCHAR (record separating
character) repeated LINESIZE times. The default is a single space.

13.41.46 SET ROWLIMIT

Syntax

SET ROWLIMIT {n | OFF}

Sets a limit for the number of rows to display for a query. By default, ROWLIMIT is
OFF.

n can be any number between 1 and 2,000,000,000. An error is displayed when the
value that is entered is outside this range.

OFF displays all the rows in the output.

SET ROWLIMIT ignores the value set by the SET FEEDBACK command.

The SET ROWLIMIT command is useful for queries that return a large number of
rows, where users want to limit the number of rows to display without changing the
query.

The purpose of the SET ROWLIMIT command is not to improve the performance of a
query but to limit the rows to display. The number of rows fetched from the database is
determined by the SET ARRAYSIZE value. Therefore, the server may return more
rows than the value set in ROWLIMIT. When that happens, the query will finish and
will not fetch any more data from the server. For example, a SQL statement to query a
table contains 100 rows, but ROWLIMIT is set to 10 and ARRAYSIZE is set to 15.
When the query is executed, 15 rows will first be fetched from the database. Since the
rows returned satisfy the ROWLIMIT setting, the query will finish without fetching any
more rows. However, if the ROWLIMIT is set to 20, then a second round trip is
required to fetch the next 15 rows to satisfy the ROWLIMIT setting.

Example

To set the number of rows to display as 2, enter:

SQL> SET ROWLIMIT 2
SQL> SHOW ROWLIMIT
rowlimit 2

Chapter 13
SET System Variable Summary

13-108

SQL> SELECT * FROM DEPT;

DEPTNO DNAME
------ -----------
10 ACCOUNTING
20 RESEARCH

2 rows selected. (rowlimit reached)

Example

By default, the FEEDBACK message is displayed only after 10 rows are displayed, but
if ROWLIMIT is set to 2, the FEEDBACK message will be displayed for two rows even
if the FEEDBACK is set to 10.

SQL> SET FEEDBACK 10
SQL> SET ROWLIMIT 2
SQL> SELECT * from EMP;

2 rows selected. (rowlimit reached)

13.41.47 SET ROWPREFETCH

Syntax

SET ROWPREFETCH {1 | n}

Sets the number of rows that SQL*Plus will prefetch from the database at one time.

The default value is 1.

Example

To set the number of prefetched rows to 200, enter

SET ROWPREFETCH 200

If you do not specify a value for n, the default is 1 row. This means that row
prefetching is off.

Note:

The amount of data contained in the prefetched rows should not exceed the
maximum value of 2147483648 bytes (2 Gigabytes). The <prefetch>
setting in the oraaccess.xml file can override the SET ROWPREFETCH
setting in SQL*Plus. For more information about oraaccess.xml, see the
Oracle Call Interface Programmer's Guide.

To show the current setting for the number of rows that SQL*Plus will prefetch from
the database at one time, enter

SHOW ROWPREF[ETCH]

Chapter 13
SET System Variable Summary

13-109

13.41.48 SET SECUREDCOL
Syntax

SET SECUREDCOL {OFF | ON} [UNAUTH[ORIZED] text] [UNK[NOWN] text]

Sets how secure column values are displayed in SQLPLUS output for users without
permission to view a column and for columns with unknown security. You can choose
either the default text or specify the text that is displayed. The default is OFF.

When column level security is enabled, and SET SECUREDCOL is set ON, output
from SQLPLUS for secured columns or columns of unknown security level is replaced
with either your customized text or the default indicators. This only applies to scalar
data types. Complex Object data output is not affected.

ON displays the default indicator "*****" in place of column values for users without
authorisation, and displays "?????" in place of column values where the security level
is unknown. The indicators "*" and "?" are filled to the defined column length or the
column length defined by a current COLUMN command.

OFF displays null values in place of column values for users without authorization, and
in place of column values where the security level is unknown.

UNAUTH[ORIZED] text enables you to specify the text to be displayed in a secured
column for users without authorization. This text appears instead of the default "*****"

You can specify any alpha numeric text up to the column length or a maximum of 30
characters. Longer text is truncated. Text containing spaces must be quoted.

UNK[NOWN] text enables you to specify the text to be displayed in a column of
unknown security level. This text appears instead of the default "??????"

You can specify any alpha numeric text up to the column length or a maximum of 30
characters. Longer text is truncated. Text containing spaces must be quoted.

Example

SET SECUREDCOL ON
SELECT empno, ename, sal FROM emp ORDER BY deptno;

EMPNO ENAME DEPTNO SAL
 7539 KING 10 ********
 7369 SMITH 20 800
 7566 JONES 20 2975
 7788 SCOTT 20 3000
 7521 WARD 30 ********
 7499 ALLEN 30 ********

SET SECUREDCOL ON UNAUTH notallow
SELECT empno, ename, sal FROM emp ORDER BY deptno;

EMPNO ENAME DEPTNO SAL
 7539 KING 10 notallow
 7369 SMITH 20 800

Chapter 13
SET System Variable Summary

13-110

 7566 JONES 20 2975
 7788 SCOTT 20 3000
 7521 WARD 30 notallow
 7499 ALLEN 30 notallow

13.41.49 SET SERVEROUTPUT
Syntax

SET SERVEROUT[PUT] {ON | OFF} [SIZE {n | UNL[IMITED]}] [FOR[MAT]
{WRA[PPED] | WOR[D_WRAPPED] | TRU[NCATED]}]

Controls whether to display output (that is, DBMS_OUTPUT.PUT_LINE) of stored
procedures or PL/SQL blocks in SQL*Plus. The DBMS_OUTPUT line length limit is
32767 bytes.

OFF suppresses the output of DBMS_OUTPUT.PUT_LINE. ON displays the output.

ON uses the SIZE and FORMAT of the previous SET SERVEROUTPUT ON SIZE n
FORMAT f, or uses default values if no SET SERVEROUTPUT command was
previously issued in the current connection.

SIZE sets the number of bytes of the output that can be buffered within the Oracle
Database server. The default is UNLIMITED. n cannot be less than 2000 or greater
than 1,000,000.

Resources are not pre-allocated when SERVEROUTPUT is set. As there is no
performance penalty, use UNLIMITED unless you want to conserve physical memory.

Every server output line begins on a new output line.

When WRAPPED is enabled SQL*Plus wraps the server output within the line size
specified by SET LINESIZE, beginning new lines when required.

When WORD_WRAPPED is enabled, each line of server output is wrapped within the
line size specified by SET LINESIZE. Lines are broken on word boundaries. SQL*Plus
left justifies each line, skipping all leading whitespace.

When TRUNCATED is enabled, each line of server output is truncated to the line size
specified by SET LINESIZE.

For detailed information about using UTL_FILE and associated utilities, see the Oracle
Database PL/SQL Packages and Types Reference .

For more information on DBMS_OUTPUT.PUT_LINE, see Developing Applications
with Oracle XA.

Example

To enable text display in a PL/SQL block using DBMS_OUTPUT.PUT_LINE, enter

SET SERVEROUTPUT ON

The following example shows what happens when you execute an anonymous
procedure with SET SERVEROUTPUT ON:

BEGIN
 DBMS_OUTPUT.PUT_LINE('Task is complete');

Chapter 13
SET System Variable Summary

13-111

END;
/

Task is complete.
PL/SQL procedure successfully completed.

The following example shows what happens when you create a trigger with SET
SERVEROUTPUT ON:

CREATE TABLE SERVER_TAB (Letter CHAR);
CREATE TRIGGER SERVER_TRIG BEFORE INSERT OR UPDATE -
OR DELETE
ON SERVER_TAB
BEGIN
DBMS_OUTPUT.PUT_LINE('Task is complete.');
END;
/

Trigger Created.

INSERT INTO SERVER_TAB VALUES ('M');
DROP TABLE SERVER_TAB;
/* Remove SERVER_TAB from database */

Task is complete.
1 row created.

To set the output to WORD_WRAPPED, enter

SET SERVEROUTPUT ON FORMAT WORD_WRAPPED
SET LINESIZE 20
BEGIN
 DBMS_OUTPUT.PUT_LINE('If there is nothing left to do');
 DBMS_OUTPUT.PUT_LINE('shall we continue with plan B?');
END;
/

If there is nothing
left to do
shall we continue
with plan B?

To set the output to TRUNCATED, enter

SET SERVEROUTPUT ON FORMAT TRUNCATED
SET LINESIZE 20
BEGIN
 DBMS_OUTPUT.PUT_LINE('If there is nothing left to do');
 DBMS_OUTPUT.PUT_LINE('shall we continue with plan B?');
END;
/

If there is nothing
shall we continue wi

Chapter 13
SET System Variable Summary

13-112

13.41.50 SET SHIFTINOUT
Syntax

SET SHIFT[INOUT] {VIS[IBLE] | INV[ISIBLE]}

Enables correct alignment for terminals that display shift characters. The SET
SHIFTINOUT command is useful for terminals which display shift characters together
with data (for example, IBM 3270 terminals). You can only use this command with shift
sensitive character sets (for example, JA16DBCS).

Use VISIBLE for terminals that display shift characters as a visible character (for
example, a space or a colon). INVISIBLE is the opposite and does not display any shift
characters.

Example

To enable the display of shift characters on a terminal that supports them, enter

SET SHIFTINOUT VISIBLE
SELECT LAST_NAME, JOB_ID FROM EMP_DETAILS_VIEW
WHERE SALARY > 12000;

LAST_NAME JOB_ID
---------- ----------
:JJOO: :AABBCC:
:AA:abc :DDEE:e

where ":" = visible shift character uppercase represents multibyte characters

lowercase represents singlebyte characters

13.41.51 SET SHOWMODE
Syntax

SET SHOW[MODE] {ON | OFF}

Controls whether SQL*Plus lists the old and new settings of a SQL*Plus system
variable when you change the setting with SET. ON lists the settings; OFF suppresses
the listing. SHOWMODE ON has the same behavior as the obsolete SHOWMODE
BOTH.

13.41.52 SET SQLBLANKLINES
Syntax

SET SQLBL[ANKLINES] {ON | OFF}

Controls whether SQL*Plus puts blank lines within a SQL command or script. ON
interprets blank lines and new lines as part of a SQL command or script. OFF, the

Chapter 13
SET System Variable Summary

13-113

default value, does not allow blank lines or new lines in a SQL command or script or
script.

Enter the BLOCKTERMINATOR to stop SQL command entry without running the SQL
command. Enter the SQLTERMINATOR character to stop SQL command entry and
run the SQL statement.

Example

To allow blank lines in a SQL statement, enter

SET SQLBLANKLINES ON
REM Using the SQLTERMINATOR (default is ";")
REM Could have used the BLOCKTERMINATOR (default is ".")
SELECT *

FROM

DUAL

;

The following output results:

D
-
X

13.41.53 SET SQLCASE
Syntax

SET SQLC[ASE] {MIX[ED] | LO[WER] | UP[PER]}

Converts the case of SQL commands and PL/SQL blocks just prior to execution.

SQL*Plus converts all text within the command, including quoted literals and
identifiers, to uppercase if SQLCASE equals UPPER, to lowercase if SQLCASE
equals LOWER, and makes no changes if SQLCASE equals MIXED.

SQLCASE does not change the SQL buffer itself.

13.41.54 SET SQLCONTINUE
Syntax

SET SQLCO[NTINUE] {> | text}

Sets the character sequence SQL*Plus displays as a prompt after you continue a
SQL*Plus command on an additional line using a hyphen (–).

Example

To set the SQL*Plus command continuation prompt to an exclamation point followed
by a space, enter

Chapter 13
SET System Variable Summary

13-114

SET SQLCONTINUE '! '

SQL*Plus will prompt for continuation as follows:

TTITLE 'MONTHLY INCOME' -
! RIGHT SQL.PNO SKIP 2 -
! CENTER 'PC DIVISION'

The default continuation prompt is "> ".

13.41.55 SET SQLNUMBER
Syntax

SET SQLN[UMBER] {ON | OFF}

Sets the prompt for the second and subsequent lines of a SQL command or PL/SQL
block. ON sets the prompt to be the line number. OFF sets the prompt to the value of
SQLPROMPT.

13.41.56 SET SQLPLUSCOMPATIBILITY
Syntax

SET SQLPLUSCOMPAT[IBILITY] {x.y[.z]}

Sets the behavior to that of the release or version specified by x.y[.z].

Where x is the version number, y is the release number, and z is the update number.
For example, 8.1.7, 9.0.1 or 10.2. The features affected by SQLPLUSCOMPATIBILITY
are tabulated in the SQL*Plus Compatibility Matrix shown. You can also set the value
of SQLPLUSCOMPATIBILITY using the -C[OMPATIBILITY] argument of the
SQLPLUS command when starting SQL*Plus from the command line.

The default setting for SQLPLUSCOMPATIBILITY is the value of the SQL*Plus client.

It is recommended that you add SET SQLPLUSCOMPATIBILITY 12.2 to your scripts
to maximize their compatibility with future versions of SQL*Plus.

13.41.56.1 SQL*Plus Compatibility Matrix
The SQL*Plus Compatibility Matrix tabulates behavior affected by each SQL*Plus
compatibility setting. SQL*Plus compatibility modes can be set in three ways:

• You can include a SET SQLPLUSCOMPATIBILITY command in your site or user
profile. On installation, there is no SET SQLPLUSCOMPATIBILITY setting in
glogin.sql. Therefore the default compatibility is 12.2.

• You can use the SQLPLUS -C[OMPATIBILITY] {x.y[.z]} command argument at
startup to set the compatibility mode of that session.

• You can use the SET SQLPLUSCOMPATIBILITY {x.y[.z]} command during a
session to set the SQL*Plus behavior you want for that session.

The following table shows the release of SQL*Plus which introduced the behavior
change, and hence the minimum value of SQLPLUSCOMPATIBILITY to obtain that

Chapter 13
SET System Variable Summary

13-115

behavior. For example, to obtain the earlier behavior of the VARIABLE command, you
must either use a version of SQL*Plus earlier than 9.0.1, or you must use a
SQLPLUSCOMPATIBILITY value of less than 9.0.1. The lowest value that can be set
for SQLPLUSCOMPATIBILITY is 7.3.4

Table 13-6 Compatibility Matrix

Value Consequence When available

>=10.1 SHOW ERRORS sorts PL/SQL error messages using new columns
only available in Oracle Database 10g.

10.1

>=10.1 SPOOL Options CREATE, REPLACE, SAVE were added which
may affect filename parsing on some platforms.

10.1

>=10.1 SET SQLPROMPT 10.1

>=10.1 Whitespace characters are allowed in Windows file names that are
enclosed in quotes. Some other special punctuation characters are
now disallowed in Windows.

10.1

>=10.1 Glogin/login files are called for each reconnect. 10.1

 <10.1 Uses the obsolete DOC> prompt when echoing /* comments. 10.1

>= 9.2 A wide column defined FOLD_AFTER may be displayed at the start
of a new line. Otherwise it is incorrectly put at the end of the
preceding line with a smaller width than expected.

9.2.

>= 9.0 Whitespace before a slash ("/") in a SQL statement is ignored and
the slash is taken to mean execute the statement. Otherwise the
slash is treated as part of the statement, for example, as a division
sign.

9.0.1.4.

>= 9.0 The length specified for NCHAR and NVARCHAR2 types is
characters. Otherwise the length may represent bytes or characters
depending on the character set.

9.0.1

13.41.57 SET SQLPREFIX
Syntax

SET SQLPRE[FIX] {# | c}

Sets the SQL*Plus prefix character. While you are entering a SQL command or
PL/SQL block, you can enter a SQL*Plus command on a separate line, prefixed by the
SQL*Plus prefix character. SQL*Plus will execute the command immediately without
affecting the SQL command or PL/SQL block that you are entering. The prefix
character must be a non-alphanumeric character.

13.41.58 SET SQLPROMPT
Syntax

SET SQLP[ROMPT] {SQL> | text}

Sets the SQL*Plus command prompt. SET SQLPROMPT substitute variables
dynamically. This enables the inclusion of runtime variables such as the current

Chapter 13
SET System Variable Summary

13-116

connection identifier. Substitution variables used in SQLPROMPT do not have to be
prefixed with '&', and they can be used and accessed like any other substitution
variable. Variable substitution is not attempted for the default prompt, "SQL> ".

Variable substitution occurs each time SQLPROMPT is SET. If SQLPROMPT is
included in glogin.sql, then substitution variables in SQLPROMPT are refreshed with
each login or connect.

Example

To change your SQL*Plus prompt to display your connection identifier, enter:

SET SQLPROMPT "_CONNECT_IDENTIFIER > "

To set the SQL*Plus command prompt to show the current user, enter

SET SQLPROMPT "_USER > "

To change your SQL*Plus prompt to display your the current date, the current user
and the users privilege level, enter:

SET SQLPROMPT "_DATE _USER _PRIVILEGE> "

To change your SQL*Plus prompt to display a variable you have defined, enter:

DEFINE mycon = Prod1
SET SQLPROMPT "mycon> "

Prod1>

Text in nested quotes is not parsed for substitution. To have a SQL*Plus prompt of
your username, followed by "@", and then your connection identifier, enter:

SET SQLPROMPT "_USER'@'_CONNECT_IDENTIFIER > "

13.41.59 SET SQLTERMINATOR
Syntax

SET SQLT[ERMINATOR] {; | c | ON | OFF}

Sets the character used to end script or data entry for PL/SQL blocks or SQL
statements, to execute the script, and to load it into the buffer.

It cannot be an alphanumeric character or a whitespace. OFF means that SQL*Plus
recognizes no command terminator; you terminate a SQL command by entering an
empty line or a slash (/). If SQLBLANKLINES is set ON, you must use the
BLOCKTERMINATOR to terminate a SQL command. ON resets the terminator to the
default semicolon (;).

Chapter 13
SET System Variable Summary

13-117

13.41.60 SET STATEMENTCACHE

Syntax

SET STATEMENTC[ACHE] {0 | n}

Sets the statement cache size. The cache value allows caching of repeated
statements. Therefore these statements do not need to be parsed again, resulting in
performance improvement.

Example

To set the statement cache size to 15, enter

SET STATEMENTCACHE 15

If you do not specify a value for n, the default is 0. This means that statement caching
is off.

The statement cache size can be any value between 0 and 32767.

Note:

Specify a cache size that is less than the value specified for the open cursor
parameter in the Oracle Database initialization file, init.ora. Specifying a
value of 0 will switch off statement caching. The <statement_cache>
setting in the oraaccess.xml file can override the SET STATEMENTCACHE
setting in SQL*Plus. For more information about oraaccess.xml, see the
Oracle Call Interface Programmer's Guide.

To show the current setting for the statement cache size, enter

SHOW STATEMENTC[ACHE]

13.41.61 SET SUFFIX
Syntax

SET SUF[FIX] {SQL | text}

Sets the default file extension that SQL*Plus uses in commands that refer to scripts.
SUFFIX does not control extensions for spool files.

Example

To change the default command-file extension from the default, .SQL to .TXT, enter

SET SUFFIX TXT

If you then enter

Chapter 13
SET System Variable Summary

13-118

GET EXAMPLE

SQL*Plus will look for a file named EXAMPLE.TXT instead of EXAMPLE.SQL.

13.41.62 SET TAB
Syntax

SET TAB {ON | OFF}

Determines how SQL*Plus formats white space in terminal output. OFF uses spaces
to format white space in the output. ON uses the TAB character. TAB settings are
every eight characters. The default value for TAB is system dependent.

13.41.63 SET TERMOUT
Syntax

SET TERM[OUT] {ON | OFF}

Controls the display of output generated by commands in a script that is executed with
@, @@ or START. OFF suppresses the display so that you can spool output to a file
without displaying the output on screen. ON displays the output on screen. TERMOUT
OFF does not affect output from commands you enter interactively or redirect to
SQL*Plus from the operating system.

13.41.64 SET TIME
Syntax

SET TI[ME] {ON | OFF}

Controls the display of the current time. ON displays the current time before each
command prompt. OFF suppresses the time display.

13.41.65 SET TIMING
Syntax

SET TIMI[NG] {ON | OFF}

Controls the display of timing statistics.

ON displays timing statistics on each SQL command or PL/SQL block run. OFF
suppresses timing of each command.

See TIMING for information on timing multiple commands.

Chapter 13
SET System Variable Summary

13-119

Example

The format of timing statistics is dependent on the operating system. In Linux and
Windows, the timing statistics are in 24 hour format displaying hours, minutes,
seconds and hundredths of seconds

SET SUFFIX TXT

If you enter

GET EXAMPLE

SQL*Plus displays output like

GET EXAMPLE

13.41.66 SET TRIMOUT
Syntax

SET TRIM[OUT] {ON | OFF}

Determines whether SQL*Plus puts trailing blanks at the end of each displayed line.
ON removes blanks at the end of each line, improving performance especially when
you access SQL*Plus from a slow communications device. OFF enables SQL*Plus to
display trailing blanks. TRIMOUT ON does not affect spooled output.

13.41.67 SET TRIMSPOOL
Syntax

SET TRIMS[POOL] {ON | OFF}

Determines whether SQL*Plus puts trailing blanks at the end of each spooled line. ON
removes blanks at the end of each line. OFF enables SQL*Plus to include trailing
blanks. TRIMSPOOL ON does not affect terminal output.

13.41.68 SET UNDERLINE
Syntax

SET UND[ERLINE] {- | c | ON | OFF}

Sets the character used to underline column headings in reports. The underline
character cannot be an alphanumeric character or a white space. ON or OFF turns
underlining on or off. ON changes the value of c back to the default "-".

Chapter 13
SET System Variable Summary

13-120

13.41.69 SET VERIFY
Syntax

SET VER[IFY] {ON | OFF}

Controls whether to list the text of a SQL statement or PL/SQL command before and
after replacing substitution variables with values. ON lists the text; OFF suppresses
the listing.

13.41.70 SET WRAP
Syntax

SET WRA[P] {ON | OFF}

Controls whether to truncate the display of a selected row if it is too long for the current
line width. OFF truncates the selected row; ON enables the selected row to wrap to
the next line.

Use the WRAPPED and TRUNCATED clauses of the COLUMN command to override
the setting of WRAP for specific columns.

13.41.71 SET XMLOPTIMIZATIONCHECK
Syntax

SET XMLOPT[IMIZATIONCHECK] [ON|OFF]

Controls whether only XML queries and DML operations that are fully optimized are
executed. ON prevents the execution of any XML query or DML operation that cannot
be fully optimized and writes the reason in the trace file. OFF does not prevent the
execution of such queries and operations. OFF is the default.

SET XMLOPT[IMIZATIONCHECK] ON is only to assist during development and
debugging an XML query or DML operation.

13.41.72 SET XQUERY BASEURI
Syntax

SET XQUERY BASEURI {text}

Specifies the base URI used to resolve relative URIs in functions. It enables the prefix
of the file accessed by an XQuery to be changed.

To unset the BASEURI, set an empty string, for example:

SET XQUERY BASEURI ''

Chapter 13
SET System Variable Summary

13-121

Take care to enter valid values as values are checked only when an XQUERY
command is issued.

Example

SET XQUERY BASEURI '/public/scott'
XQUERY for $i in doc("foo.xml") return $i
/

This is equivalent to:

XQuery declare base-uri "/public/hr";
for $i in doc("foo.xml") return $i

13.41.73 SET XQUERY ORDERING
Syntax

SET XQUERY ORDERING {UNORDERED | ORDERED | DEFAULT}

Sets the ordering of output from an XQuery. There are three values:

UNORDERED specifies that results are sorted in the order they are retrieved from the
database.

ORDERED specifies that results are sorted as defined by the XQuery.

DEFAULT specifies the database default. In Oracle Database 10g the default is
UNORDERED.

When SET XQUERY ORDERING is not set, the default is DEFAULT (UNORDERED).

Example

SET XQUERY ORDERING ORDERED
XQUERY for $i in doc("foo.xml") return $i
/

This is equivalent to:

XQuery declare ordering ordered;
for $i in doc("foo.xml") return $i
/

13.41.74 SET XQUERY NODE
Syntax

SET XQUERY NODE {BYVALUE | BYREFERENCE | DEFAULT}

Sets the node identity preservation mode. The preservation mode applies to all
expressions that either create a new node (such as element constructors) or return an
item or sequence containing nodes (such as path expressions). There are three
values:

BYVALUE specifies that the node identity need not be preserved. This means that any
node operation such as creation, or that is returned as a result of an expression is

Chapter 13
SET System Variable Summary

13-122

deep copied and loses its context from the original tree. Subsequent operations on this
node that test for node identity, parent or sibling axes or ordering will be undefined.

BYREFERENCE specifies that node identities are to be preserved. Subsequent
operations on this node preserve the node's context and definition.

DEFAULT specifies the database default. In Oracle Database 10g the default is
BYVALUE.

When SET XQUERY NODE is not set, the default is DEFAULT (BYVALUE).

Example

SET XQUERY NODE BYREFERENCE
XQUERY for $i in doc("foo.xml") return $i
/

This is equivalent to:

XQuery declare node byreference;
for $i in doc("foo.xml") return $i
/

13.41.75 SET XQUERY CONTEXT
Syntax

SET XQUERY CONTEXT {text}

Specifies an XQuery context item expression. A context item expression evaluates to
the context item, which may be either a node (as in the expression fn:doc("bib.xml")//
book[fn:count(./author)>1]), or an atomic value (as in the expression (1 to 100)[. mod 5
eq 0]).

To unset the XQUERY CONTEXT, set an empty string, for example:

SET XQUERY CONTEXT ''

Take care to enter valid values as values are checked only when an XQUERY
command is issued.

Example

SET XQUERY CONTEXT 'doc("foo.xml")'
XQUERY for $i in /a return $i
/

This is equivalent to:

XQuery for $i in /a return $i
passing XMLQuery("doc('foo.xml')")
/

Chapter 13
SET System Variable Summary

13-123

13.42 SHOW

Note:

A multitenant container database is the only supported architecture in Oracle
Database 20c. While the documentation is being revised, legacy terminology
may persist. In most cases, "database" and "non-CDB" refer to a CDB or
PDB, depending on context. In some contexts, such as upgrades, "non-CDB"
refers to a non-CDB from a previous release.

Syntax

SHO[W] option

where option represents one of the following terms or clauses:

system_variable ALL BTI[TLE] CON_ID CON_NAME EDITION ERR[ORS] [{ANALYTIC VIEW |
ATTRIBUTE DIMENSION | HIERARCHY | FUNCTION | PROCEDURE | PACKAGE | PACKAGE BODY |
TRIGGER | VIEW | TYPE | TYPE BODY | DIMENSION | JAVA CLASS } [schema.]name]HISTORY
LNO LOBPREF[ETCH] PARAMETER[S] [parameter_name] PDBS PNO RECYC[LEBIN]
[original_name] REL[EASE] REPF[OOTER] REPH[EADER] ROWPREF[ETCH] SGA SPOO[L]
SPPARAMETER[S] [parameter_name] SQLCODE STATEMENTC[ACHE] TTI[TLE] USER XQUERY

Shows the value of a SQL*Plus system variable or the current SQL*Plus environment.
SHOW SGA requires a DBA privileged login.

Terms

system_variable

Represents any system variable set by the SET command.

ALL

Lists the settings of all SHOW options, except ERRORS and SGA, in alphabetical
order.

CON_ID

Displays the id of the Container to which you are connected when connected to a
Consolidated Database. If issued when connected to a non-Consolidated Database,
this command returns 0.

CON_NAME

Displays the name of the Container to which you are connected when connected to a
Consolidated Database. For non-consolidated database, it will return "Non
Consolidated".

EDITION

Shows the edition attribute of the existing database.

BTI[TLE]

Chapter 13
SHOW

13-124

Shows the current BTITLE definition.

ERR[ORS] [{ANALYTIC VIEW | ATTRIBUTE DIMENSION | HIERARCHY | FUNCTION | PROCEDURE |
PACKAGE | PACKAGE BODY | TRIGGER | VIEW | TYPE | TYPE BODY | DIMENSION | JAVA
CLASS} [schema.]name]

Shows the compilation errors of a stored procedure (includes stored functions,
procedures, and packages). After you use the CREATE command to create a stored
procedure, a message is displayed if the stored procedure has any compilation errors.
To see the errors, you use SHOW ERRORS.

When you specify SHOW ERRORS with no arguments, SQL*Plus shows compilation
errors for the most recently created or altered stored procedure. When you specify the
type (analytic view, attribute dimension, hierarchy, function, procedure, package,
package body, trigger, view, type, type body, dimension, or java class) and the name
of the PL/SQL stored procedure, SQL*Plus shows errors for that stored procedure. For
more information on compilation errors, see your PL/SQL User's Guide and
Reference.

schema contains the named object. If you omit schema, SHOW ERRORS assumes
the object is located in your current schema.

SHOW ERRORS output displays the line and column number of the error (LINE/COL)
as well as the error itself (ERROR). LINE/COL and ERROR have default widths of 8
and 65, respectively. You can use the COLUMN command to alter the default widths.

HISTORY

Shows the current command history status that is set by using the SET HISTORY
command.

LNO

Shows the current line number (the position in the current page of the display and/or
spooled output).

LOBPREFETCH

Shows the current setting for the amount of LOB data that SQL*Plus will prefetch from
the database at one time. For more information about setting the amount of LOB data
that SQL*Plus will prefetch from the database at one time, see SET LOBPREFETCH.

PARAMETERS [parameter_name]

Displays the current values for one or more initialization parameters. You can use a
string after the command to see a subset of parameters whose names include that
string. For example, if you enter:

SHOW PARAMETERS COUNT

NAME TYPE VALUE
------------------------------ ----- -----
db_file_multiblock_read_count integer 12
spin_count integer 0

The SHOW PARAMETERS command, without any string following the command,
displays all initialization parameters.

Chapter 13
SHOW

13-125

Your output may vary depending on the version and configuration of the Oracle
Database server to which you are connected. You need SELECT ON
V_$PARAMETER object privileges to use the PARAMETERS clause, otherwise you
will receive a message

ORA-00942: table or view does not exist

PDBS

Display the names, ids, mode and restriction status of Pluggable Databases in the
Consolidated Database to which you are connected.

The PDBS option is only available when you are logged in as SYSDBA and have the
SYSDBA privilege. For non-DBA users, attempting to use the PDBS option returns the
error SP2-0382: The SHOW PDBS command is not available.

PNO

Shows the current page number.

RECYC[LEBIN] [original_name]

Shows objects in the recycle bin that can be reverted with the FLASHBACK BEFORE
DROP command. You do not need to remember column names, or interpret the less
readable output from the query:

SELECT * FROM USER_RECYCLEBIN

The query returns four columns displayed in the following order:

Column Name Description

ORIGINAL NAME Shows the original name used when creating the object.

RECYCLEBIN NAME Shows the name used to identify the object in the
recyclebin.

OBJECT TYPE Shows the type of the object.

DROP TIME Shows the time when the object was dropped.

The output columns can be formatted with the COLUMN command.

For DBAs, the command lists their own objects as they have their own user_recyclebin
view.

REL[EASE]

Shows the release number of Oracle Database that SQL*Plus is accessing.

REPF[OOTER]

Shows the current REPFOOTER definition.

REPH[EADER]

Shows the current REPHEADER definition.

ROWPREFETCH

Chapter 13
SHOW

13-126

Shows the current setting for the number of rows that SQL*Plus will prefetch from the
database at one time. For more information about setting the number of rows that
SQL*Plus will prefetch from the database at one time, see SET ROWPREFETCH.

SPOO[L]

Shows whether output is being spooled.

SGA

Displays information about the current instance's System Global Area. You need
SELECT ON V_$SGA object privileges otherwise you will receive a message

ORA-00942: table or view does not exist

SPPARAMETERS [parameter_name]

As for SHOW PARAMETERS except that SHOW SPPARAMETERS displays current
values for initialization parameters for all instances. You can use a string after the
command to see a subset of parameters whose names include that string.

The SHOW SPPARAMETERS command, without any string following the command,
displays all initialization parameters for all instances.

Your output may vary depending on the version and configuration of the Oracle
Database server to which you are connected. You need SELECT ON
V_$PARAMETER object privileges to use the SPPARAMETERS clause.

SQLCODE

Shows the value of SQL.SQLCODE (the SQL return code of the most recent
operation).

STATEMENTCACHE

Shows the current setting for the statement cache size. For more information about
setting the statement cache size, see SET STATEMENTCACHE.

TTI[TLE]

Shows the current TTITLE definition.

USER

Shows the username you are currently using to access SQL*Plus. If you connect as "/
AS SYSDBA", then the SHOW USER command displays

USER is "SYS"

XQUERY

Shows the current values of the XQUERY settings, BASEURI, CONTEXT, NODE and
ORDERING.

xquery BASEURI "public/scott" CONTEXT "doc("test.xml")" NODE byreference ORDERING
ordered

The following output is displayed when no values are set:

xquery BASEURI "" CONTEXT "" NODE default ORDERING default

Chapter 13
SHOW

13-127

Examples

To display information about the SGA, enter

SHOW SGA

Total System Global Area 7629732 bytes
Fixed Size 60324 bytes
Variable Size 6627328 bytes
Database Buffers 409600 bytes
Redo Buffers 532480 bytes

The following example illustrates how to create a stored procedure and then show its
compilation errors:

CONNECT SYSTEM/MANAGER
CREATE PROCEDURE HR.PROC1 AS
BEGIN
:P1 := 1;
END;
/

Warning: Procedure created with compilation errors.

SHOW ERRORS PROCEDURE PROC1

NO ERRORS.

SHOW ERRORS PROCEDURE HR.PROC1

Errors for PROCEDURE HR PROC1:
LINE/COL ERROR
--
3/3 PLS-00049: bad bind variable 'P1'

To show whether AUTORECOVERY is enabled, enter

SHOW AUTORECOVERY

AUTORECOVERY ON

To display the id of the container to which you are connected, enter

SHOW CON_ID

CON_ID

1

To display the name of the container to which you are connected, enter

Chapter 13
SHOW

13-128

SHOW CON_NAME

CON_NAME

CDB$ROOT

To display the current command history status that is set by issuing the SET
HIST[ORY] {ON | OFF | n} command, enter

SHOW HISTORY

SQL> set history on
SQL> show history
History is ON and set to "100"
SQL> set history off
SQL> show history
History is OFF
SQL> set history 1000
SQL> show history
History is ON and set to "1000"

To display the names, ids, and modes of Pluggable Databases in the Consolidated
Database to which you are connected, enter

SHOW PDBS

CON_ID CON_NAME OPEN MODE RESTRICTED
------ ---------- ------------ -----------
2 PDB$SEED READ ONLY NO
3 CDB1_PDB1 READ WRITE NO

To display the connect identifier for the default instance, enter

SHOW INSTANCE

INSTANCE "LOCAL"

To display the location for archive logs, enter

SHOW LOGSOURCE

LOGSOURCE "/usr/oracle90/dbs/arch"

To display objects that can be reverted with the FLASHBACK commands where CJ1
and ABC were objects dropped, enter:

SHOW RECYCLEBIN

ORIGINAL NAME RECYCLEBIN NAME OBJECT TYPE DROP TIME
-------------- ------------------ ------------

Chapter 13
SHOW

13-129

CJ1 RB$$29458$TABLE$0 TABLE 2003-01-22:14:54:07
ABC RB$$29453$TABLE$0 TABLE 2003-01-20:18:50:29

To restore CJ1, enter

FLASHBACK TABLE CJ1 TO BEFORE DROP;

13.43 SHUTDOWN

Note:

A multitenant container database is the only supported architecture in Oracle
Database 20c. While the documentation is being revised, legacy terminology
may persist. In most cases, "database" and "non-CDB" refer to a CDB or
PDB, depending on context. In some contexts, such as upgrades, "non-CDB"
refers to a non-CDB from a previous release.

Syntax

SHUTDOWN [ABORT | IMMEDIATE | NORMAL | TRANSACTIONAL [LOCAL]]

Shuts down a currently running Oracle Database instance, optionally closing and
dismounting a database. If the current database is a pluggable database, only the
pluggable database is closed. The consolidated instance continues to run.

Shutdown commands that wait for current calls to complete or users to disconnect
such as SHUTDOWN NORMAL and SHUTDOWN TRANSACTIONAL have a time
limit that the SHUTDOWN command will wait. If all events blocking the shutdown have
not occurred within the time limit, the shutdown command cancels with the following
message:

ORA-01013: user requested cancel of current operation

Prerequisites for PDB Shutdown

When the current container is a pluggable database (PDB), the SHUTDOWN
command can only be used if:

• The current user has SYSDBA, SYSOPER, SYSBACKUP, or SYSDG system
privilege.

• The privilege is either commonly granted or locally granted in the PDB.

• The current user exercises the privilege using AS SYSDBA, AS SYSOPER, AS
SYSBACKUP, or AS SYSDG at connect time.

• To close a PDB, the PDB must be open.

For more information, see the Oracle Database Administrator's Guide

Terms

ABORT

Proceeds with the fastest possible shutdown of the database without waiting for calls
to complete or users to disconnect.

Chapter 13
SHUTDOWN

13-130

Uncommitted transactions are not rolled back. Client SQL statements currently being
processed are terminated. All users currently connected to the database are implicitly
disconnected and the next database startup will require instance recovery.

You must use this option if a background process terminates abnormally.

IMMEDIATE

Does not wait for current calls to complete or users to disconnect from the database.

Further connects are prohibited. The database is closed and dismounted. The
instance is shutdown and no instance recovery is required on the next database
startup.

NORMAL

NORMAL is the default option which waits for users to disconnect from the database.

Further connects are prohibited. The database is closed and dismounted. The
instance is shutdown and no instance recovery is required on the next database
startup.

TRANSACTIONAL [LOCAL]

Performs a planned shutdown of an instance while allowing active transactions to
complete first. It prevents clients from losing work without requiring all users to log off.

No client can start a new transaction on this instance. Attempting to start a new
transaction results in disconnection. After completion of all transactions, any client still
connected to the instance is disconnected. Now the instance shuts down just as it
would if a SHUTDOWN IMMEDIATE statement was submitted. The next startup of the
database will not require any instance recovery procedures.

The LOCAL mode specifies a transactional shutdown on the local instance only, so
that it only waits on local transactions to complete, not all transactions. This is useful,
for example, for scheduled outage maintenance.

Usage

SHUTDOWN with no arguments is equivalent to SHUTDOWN NORMAL.

You must be connected to a database as SYSDBA, SYSOPER, SYSBACKUP, or
SYSDG. You cannot connect through a multi-threaded server. See CONNECT for
more information about connecting to a database.

Examples

If logged into a CDB, shutdown closes the CDB instance.

To shutdown a CDB, you must be connected to the CDB instance that you want to
close, and then enter

SHUTDOWN

Database closed.
Database dismounted.
Oracle instance shut down.

To shutdown a PDB, you must log into the PDB to issue the SHUTDOWN command.

Chapter 13
SHUTDOWN

13-131

SHUTDOWN

Pluggable Database closed.

13.44 SPOOL
Syntax

SPO[OL] [file_name[.ext] [CRE[ATE] | REP[LACE] | APP[END]] | OFF | OUT]

Stores query results in a file, or optionally sends the file to a printer.

Terms

file_name[.ext]

Represents the name of the file to which you wish to spool. SPOOL followed by
file_name begins spooling displayed output to the named file. If you do not specify an
extension, SPOOL uses a default extension (LST or LIS on most systems). The
extension is not appended to system files such as /dev/null and /dev/stderr.

CRE[ATE]

Creates a new file with the name specified.

REP[LACE]

Replaces the contents of an existing file. If the file does not exist, REPLACE creates
the file. This is the default behavior.

APP[END]

Adds the contents of the buffer to the end of the file you specify.

OFF

Stops spooling.

OUT

Stops spooling and sends the file to your computer's standard (default) printer. This
option is not available on some operating systems.

Enter SPOOL with no clauses to list the current spooling status.

Usage

To spool output generated by commands in a script without displaying the output on
the screen, use SET TERMOUT OFF. SET TERMOUT OFF does not affect output
from commands that run interactively.

You must use quotes around file names containing white space.

To create a valid HTML file using SPOOL APPEND commands, you must use
PROMPT or a similar command to create the HTML page header and footer. The
SPOOL APPEND command does not parse HTML tags.

Chapter 13
SPOOL

13-132

SET SQLPLUSCOMPAT[IBILITY] to 9.2 or earlier to disable the CREATE, APPEND
and SAVE parameters. See SQL*Plus Compatibility Matrix to determine what
functionality is controlled by the SET SQLPLUSCOMPAT[IBILITY] command.

Examples of SPOOL Command

To record your output in the new file DIARY using the default file extension, enter

SPOOL DIARY CREATE

To append your output to the existing file DIARY, enter

SPOOL DIARY APPEND

To record your output to the file DIARY, overwriting the existing content, enter

SPOOL DIARY REPLACE

To stop spooling and print the file on your default printer, enter

SPOOL OUT

13.45 START
Syntax

STA[RT] {url | file_name[.ext] } [arg...]

Runs the SQL*Plus statements in the specified script. The script can be called from
the local file system or from a web server.

Terms

url

Specifies the Uniform Resource Locator of a script to run on the specified web server.
SQL*Plus supports HTTP and FTP protocols, but not HTTPS. HTTP authentication in
the form http://username:password@machine_name.domain... is not supported in this
release.

file_name[.ext]

The script you wish to execute. The file can contain any command that you can run
interactively.

If you do not specify an extension, SQL*Plus assumes the default command-file
extension (normally SQL). See SET SUF[FIX] {SQL | text} for information on changing
the default extension.

When you enter START file_name.ext, SQL*Plus searches for a file with the filename
and extension you specify in the current default directory. If SQL*Plus does not find
such a file, SQL*Plus will search a system-dependent path to find the file. Some
operating systems may not support the path search. See the platform-specific Oracle
documentation provided for your operating system for specific information related to
your operating system environment.

arg ...

Chapter 13
START

13-133

Data items you wish to pass to parameters in the script. If you enter one or more
arguments, SQL*Plus substitutes the values into the parameters (&1, &2, and so forth)
in the script. The first argument replaces each occurrence of &1, the second replaces
each occurrence of &2, and so on.

The START command defines the parameters with the values of the arguments; if you
START the script again in this session, you can enter new arguments or omit the
arguments to use the old values.

See Defining Substitution Variables and Using Substitution Variables for more
information on using parameters.

Usage

All previous settings like COLUMN command settings stay in effect when the script
starts. If the script changes any setting, then this new value stays in effect after the
script has finished

The @ (at sign) and @@ (double at sign) commands function similarly to START.
Disabling the START command in the Product User Profile also disables the @ and
@@ commands. See @ (at sign) and @@ (double at sign) for further information on
these commands. See Disabling SQL*Plus_ SQL_ and PL/SQL Commands for
more information.

The EXIT or QUIT command in a script terminates SQL*Plus.

Examples

A file named PROMOTE with the extension SQL, used to promote employees, might
contain the following command:

SELECT FIRST_NAME, LAST_NAME, JOB_ID, SALARYFROM EMP_DETAILS_VIEWWHERE JOB_ID='&1'
AND SALARY>&2;

To run this script, enter

START PROMOTE ST_MAN 7000

or if it is located on a web server, enter a command in the form:

START HTTP://machine_name.domain:port/PROMOTE.SQL ST_MAN 7000

Where machine_name.domain must be replaced by the host.domain name, and port
by the port number used by the web server where the script is located.

The following command is executed:

SELECT LAST_NAME, LAST_NAME
FROM EMP_DETAILS_VIEW
WHERE JOB_ID='ST_MAN' AND SALARY>7000;

and the results displayed.

Chapter 13
START

13-134

13.46 STARTUP

Note:

A multitenant container database is the only supported architecture in Oracle
Database 20c. While the documentation is being revised, legacy terminology
may persist. In most cases, "database" and "non-CDB" refer to a CDB or
PDB, depending on context. In some contexts, such as upgrades, "non-CDB"
refers to a non-CDB from a previous release.

Syntax

STARTUP db_options | cdb_options | upgrade_options

where db options has the following syntax:

[FORCE] [RESTRICT] [PFILE=filename] [QUIET] [MOUNT [dbname] | [OPEN
[open_db_options] [dbname]] | NOMOUNT]

where open_db_options has the following syntax:

READ {ONLY | WRITE [RECOVER]} | RECOVER

where cdb_options has the following syntax:

root_connection_options | pdb_connection_options

where root_connection_options has the following syntax:

PLUGGABLE DATABASE pdbname [FORCE] | [UPGRADE] | [RESTRICT] [OPEN
{open_pdb_options}]

where pdb_connection_options has the following syntax:

[FORCE] | [UPGRADE] | [RESTRICT] [OPEN {open_pdb_options}]

where open_pdb_options has the following syntax:

READ WRITE | READ ONLY

and where upgrade_options has the following syntax:

[PFILE=filename] {UPGRADE | DOWNGRADE} [QUIET]

Starts an Oracle Database instance with several options, including mounting and
opening a database.

Prerequisites for a PDB STARTUP

When the current container is a pluggable database (PDB), the STARTUP command
can only be used if:

• The current user has SYSDBA, SYSOPER, SYSBACKUP, or SYSDG system
privilege.

• The privilege is either commonly granted or locally granted in the PDB.

Chapter 13
STARTUP

13-135

• The current user exercises the privilege using AS SYSDBA, AS SYSOPER,
SYSBACKUP, or AS SYSDG at connect time.

• The PDB is in MOUNTED mode, excluding the use of the FORCE option.

• The PDB must be in READ ONLY or READ WRITE mode to be in mounted mode.

For more information, see the Oracle Database Administrator's Guide

Note:

Only use db_options to start a Database.

Only use root_connection_options to start a Pluggable Database while
connected to the Root.

Only use pdb_options to start a Pluggable Database to which you are
connected.

Only use upgrade_options to start a Database for upgrade or downgrade.

If neither READ WRITE nor READ ONLY is specified, a PDB will be opened in
READ ONLY if a CDB to which it belongs is used as a physical standby
database, otherwise the PDB will be opened READ WRITE.

For more information about using Consolidated and Pluggable Databases,
see Creating and Configuring an Oracle Database.

Terms

FORCE

Shuts down the current Oracle Database instance (if it is running) with SHUTDOWN
mode ABORT, before restarting it. If the current instance is running and FORCE is not
specified, an error results. FORCE is useful while debugging and under abnormal
circumstances. It should not normally be used.

RESTRICT

Only enables Oracle Database users with the RESTRICTED SESSION system
privilege to connect to the database. Later, you can use the ALTER SYSTEM
command to disable the restricted session feature.

PFILE=filename

Specifies the client parameter file to be used while starting the instance. If PFILE is not
specified, the server attempts to access a default server parameter file (spfile). If the
default spfile isn't found, the server then attempts to access a default pfile. The default
files are platform specific. For example, the default file is $ORACLE_HOME/dbs/
init$ORACLE_SID.ora on UNIX, and ORACLE_HOME\database\initORCL.ora on
Windows.

QUIET

Suppresses the display of System Global Area information for the starting instance.

MOUNT dbname

Chapter 13
STARTUP

13-136

Mounts a database but does not open it.

dbname is the name of the database to mount or open. If no database name is
specified, the database name is taken from the initialization parameter DB_NAME.

OPEN

Mounts and opens the specified database.

NOMOUNT

Causes the database not to be mounted upon instance startup.

Cannot be used with MOUNT, or OPEN.

RECOVER

Specifies that media recovery should be performed, if necessary, before starting the
instance. STARTUP RECOVER has the same effect as issuing the RECOVER
DATABASE command and starting an instance. Only complete recovery is possible
with the RECOVER option.

Recovery proceeds, if necessary, as if AUTORECOVERY is set to ON, regardless of
whether or not AUTORECOVERY is enabled. If a redo log file is not found in the
expected location, recovery continues as if AUTORECOVERY is disabled, by
prompting you with the suggested location and name of the subsequent log files that
need to be applied.

UPGRADE

Starts the database in OPEN UPGRADE mode and sets system initialization
parameters to specific values required to enable database upgrade scripts to be run.
UPGRADE should only be used when a database is first started with a new version of
the Oracle Database Server.

When run, upgrade scripts transform an installed version or release of an Oracle
database into a later version, for example, to upgrade an Oracle9i database to Oracle
Database 10g. Once the upgrade completes, the database should be shut down and
restarted normally.

DOWNGRADE

Starts the database in OPEN DOWNGRADE mode and sets system initialization
parameters to specific values required to enable database downgrade scripts to be
run.

When run, downgrade scripts transform an installed version or release of Oracle
Database into a previous version, for example, to downgrade an Oracle10g database
to an Oracle9i database. Once the downgrade completes, the database should be
shut down and restarted normally.

PLUGGABLE DATABASE

Use the pluggable database pdbname option to specify the plugggable database on
which you want the STARTUP command to act.

Usage

You must be connected to a database as SYSDBA, SYSOPER, SYSBACKUP, or
SYSDG. You cannot be connected to a shared server via a dispatcher.

Chapter 13
STARTUP

13-137

STARTUP with no arguments is equivalent to STARTUP OPEN.

STARTUP OPEN RECOVER mounts and opens the database even when recovery
fails.

Examples

To start a CDB instance using the standard parameter file, mount the default
database, and open the database, enter

STARTUP

or enter

STARTUP OPEN database

To start an instance using the standard parameter file, mount the default database,
and open the database, enter

STARTUP FORCE RESTRICT MOUNT

To start an instance using the parameter file TESTPARM without mounting the
database, enter

STARTUP PFILE=testparm NOMOUNT

To shutdown a particular database, immediately restart and open it, allow access only
to users with the RESTRICTED SESSION privilege, and use the parameter file
MYINIT.ORA. enter

STARTUP FORCE RESTRICT PFILE=myinit.ora OPEN database

To startup an instance and mount but not open a database, enter

CONNECT / as SYSDBA

Connected to an idle instance.

STARTUP MOUNT

ORACLE instance started.

Total System Global Area 7629732 bytes
Fixed Size 60324 bytes
Variable Size 6627328 bytes
Database Buffers 409600 bytes
Redo Buffers 532480 bytes

To startup a PDB from a PDB container, enter the following sequence

CONNECT SYS/<password>@CDB1_PDB1 AS SYSDBA

Connected.

Chapter 13
STARTUP

13-138

SHOW CON_NAME

CON_NAME

CDB1_PDB1

SHOW PDBS

 CON_ID CON_NAME OPEN MODE RESTRICTED
---------- ------------------------------ ---------- ----------
 3 CDB1_PDB1 MOUNTED

STARTUP

Pluggable Database opened.

SHOW PDBS

 CON_ID CON_NAME OPEN MODE RESTRICTED
---------- ------------------------------ ---------- ----------
 3 CDB1_PDB1 READ WRITE NO

To startup a PDB from root, enter the following sequence

CONNECT / AS SYSDBA

Connected.

SHOW CON_NAME

CON_NAME

CDB$ROOT

SHOW PDBS

 CON_ID CON_NAME OPEN MODE RESTRICTED
---------- ------------------------------ ---------- ----------
 2 PDB$SEED READ ONLY NO
 3 CDB1_PDB1 MOUNTED

STARTUP PLUGGABLE DATABASE CDB1_PDB1

Pluggable Database opened.

SHOW PDBS

 CON_ID CON_NAME OPEN MODE RESTRICTED
---------- ------------- ---------- ----------

Chapter 13
STARTUP

13-139

 2 PDB$SEED READ ONLY NO
 3 CDB1_PDB1 READ WRITE NO

13.47 STORE
Syntax

STORE SET file_name[.ext] [CRE[ATE | REP[LACE] | APP[END]]

Saves attributes of the current SQL*Plus environment in a script.

Terms

See SAVE for information on the other terms and clauses in the STORE command
syntax.

SET

Saves the values of the system variables.

Usage

This command creates a script which can be executed with the START, @ (at sign) or
@@ (double at sign) commands.

If you want to store a file under a name identical to a STORE command clause (that is,
CREATE, REPLACE or APPEND), you must put the name in single quotes or specify
a file extension.

Examples

To store the current SQL*Plus system variables in a file named DEFAULTENV with
the default command-file extension, enter

STORE SET DEFAULTENV

To append the current SQL*Plus system variables to an existing file called
DEFAULTENV with the extension OLD, enter

STORE SET DEFAULTENV.OLD APPEND

13.48 TIMING
Syntax

TIMI[NG] [START text | SHOW | STOP]

Records timing data for an elapsed period of time, lists the current timer's name and
timing data, or lists the number of active timers.

Terms

START text

Sets up a timer and makes text the name of the timer. You can have more than one
active timer by STARTing additional timers before STOPping the first; SQL*Plus nests

Chapter 13
STORE

13-140

each new timer within the preceding one. The timer most recently STARTed becomes
the current timer.

SHOW

Lists the current timer's name and timing data.

STOP

Lists the current timer's name and timing data, then deletes the timer. If any other
timers are active, the next most recently STARTed timer becomes the current timer.

Enter TIMING with no clauses to list the number of active timers. For other information
about TIMING, see SET AUTOTRACE

Usage

You can use this data to do a performance analysis on any commands or blocks run
during the period.

See the SET TIMING command for information on automatically displaying timing data
after each SQL command or PL/SQL block you run.

To delete all timers, use the CLEAR TIMING command.

Examples

To create a timer named SQL_TIMER, enter

TIMING START SQL_TIMER

To list the current timer's title and accumulated time, enter

TIMING SHOW

To list the current timer's title and accumulated time and to remove the timer, enter

TIMING STOP

13.49 TTITLE
Syntax

TTI[TLE] [printspec [text | variable] ...] [ON | OFF]

where printspec represents one or more of the following clauses used to place and
format the text:

BOLD CE[NTER] COL n FORMAT text LE[FT] R[IGHT] S[KIP] [n] TAB n

Places and formats a specified title at the top of each report page. Enter TTITLE with
no clauses to list its current definition. The old form of TTITLE is used if only a single
word or string in quotes follows the TTITLE command.

See TTI[TLE] text (obsolete old form) for a description of the old form of TTITLE.

Terms

These terms and clauses also apply to the BTITLE command.

Chapter 13
TTITLE

13-141

text

The title text. Enter text in single quotes if you want to place more than one word on a
single line.

variable

A substitution variable or any of the following system-maintained values, SQL.LNO
(the current line number), SQL.PNO (the current page number), SQL.RELEASE (the
current Oracle Database release number), SQL.SQLCODE (the current error code), or
SQL.USER (the current username).

To print one of these values, reference the appropriate variable in the title. You can
format variable with the FORMAT clause.

SQL*Plus substitution variables (& variables) are expanded before TTITLE is
executed. The resulting string is stored as the TTITLE text. During subsequent
execution for each page of results, the expanded value of a variable may itself be
interpreted as a substitution variable with unexpected results.

You can avoid this double substitution in a TTITLE command by not using the & prefix
for variables that are to be substituted on each page of results. If you want to use a
substitution variable to insert unchanging text in a TTITLE, enclose it in quotes so that
it is only substituted once.

OFF

Turns the title off (suppresses its display) without affecting its definition.

ON

Turns the title on (restores its display). When you define a top title, SQL*Plus
automatically sets TTITLE to ON.

COL n

Indents to column n of the current line (backward if column n has been passed). Here
"column" means print position, not table column.

S[KIP] [n]

Skips to the start of a new line n times; if you omit n, one time; if you enter zero for n,
backward to the start of the current line.

TAB n

Skips forward n columns (backward if you enter a negative value for n). "Column" in
this context means print position, not table column.

LE[FT] | CE[NTER] | R[IGHT]

Left-align, center, and right-align data on the current line respectively. SQL*Plus aligns
following data items as a group, up to the end of the printspec or the next LEFT,
CENTER, RIGHT, or COL command. CENTER and RIGHT use the SET LINESIZE
value to calculate the position of the data item that follows.

BOLD

Chapter 13
TTITLE

13-142

Prints data in bold print. SQL*Plus represents bold print on your terminal by repeating
the data on three consecutive lines. On some operating systems, SQL*Plus may
instruct your printer to print bold text on three consecutive lines, instead of bold.

FORMAT text

Specifies a format model that determines the format of following data items, up to the
next FORMAT clause or the end of the command. The format model must be a text
constant such as A10 or $999. See the COLUMN command for more information on
formatting and valid format models.

If the datatype of the format model does not match the datatype of a given data item,
the FORMAT clause has no effect on that item.

If no appropriate FORMAT model precedes a given data item, SQL*Plus prints
NUMBER values using the format specified by SET NUMFORMAT or, if you have not
used SET NUMFORMAT, the default format. SQL*Plus prints DATE values according
to the default format.

Enter TTITLE with no clauses to list the current TTITLE definition.

Usage

If you do not enter a printspec clause before the first occurrence of text, TTITLE left
justifies the text. SQL*Plus interprets TTITLE in the new form if a valid printspec
clause (LEFT, SKIP, COL, and so on) immediately follows the command name.

See COLUMN for information on printing column and DATE values in the top title.

You can use any number of constants and variables in a printspec. SQL*Plus displays
them in the order you specify them, positioning and formatting each constant or
variable as specified by the printspec clauses that precede it.

The length of the title you specify with TTITLE cannot exceed 2400 characters.

The continuation character (a hyphen) will not be recognized inside a single-quoted
title text string. To be recognized, the continuation character must appear outside the
quotes, as follows:

TTITLE CENTER 'Summary Report for' -
> 'the Month of May'

Examples

To define "Monthly Analysis" as the top title and to left-align it, to center the date, to
right-align the page number with a three-digit format, and to display "Data in
Thousands" in the center of the next line, enter

TTITLE LEFT 'Monthly Analysis' CENTER '01 Jan 2003' -
RIGHT 'Page:' FORMAT 999 SQL.PNO SKIP CENTER -
'Data in Thousands'

Monthly Analysis 01 Jan 2003 Page: 1
 Data in Thousands

To suppress the top title display without changing its definition, enter

TTITLE OFF

Chapter 13
TTITLE

13-143

13.50 UNDEFINE
Syntax

UNDEF[INE] variable ...

where variable represents the name of the substitution variable you want to delete.

Deletes one or more substitution variables that you defined either explicitly (with the
DEFINE command) or implicitly (with an argument to the START command).

Examples

To undefine a substitution variable named POS, enter

UNDEFINE POS

To undefine two substitution variables named MYVAR1 and MYVAR2, enter

UNDEFINE MYVAR1 MYVAR2

13.51 VARIABLE
Syntax

VAR[IABLE] [variable [type [=value]]]

Declares a bind variable that can be referenced in PL/SQL, or lists the current display
characteristics for a single variable or all variables.

type represents one of the following:

NUMBER CHAR CHAR (n [CHAR | BYTE]) NCHAR NCHAR (n) VARCHAR2 (n [CHAR | BYTE])
NVARCHAR2 (n) CLOB NCLOB REFCURSOR BINARY_FLOAT BINARY_DOUBLE

VARIABLE without arguments displays a list of all the variables declared in the
session. VARIABLE followed only by a variable name lists that variable.

To free resources used by CLOB and NCLOB bind variables, you may need to
manually free temporary LOBs with:

EXECUTE DBMS_LOB.FREETEMPORARY(:cv)

See About Using Bind Variables for more information on bind variables. See your
Oracle Database PL/SQL Language Reference for more information about PL/SQL.

Terms

variable

Represents the name of the bind variable you wish to create.

value

Allows you to assign a value to a variable for input binding.

NUMBER

Chapter 13
UNDEFINE

13-144

Creates a variable of type NUMBER with fixed length.

CHAR

Creates a variable of type CHAR (character) with length one.

CHAR (n[CHAR | BYTE])

Creates a variable of type CHAR with length n bytes or n characters. The maximum
that n can be is 2000 bytes, and the minimum is 1 byte or 1 character. The maximum n
for a CHAR variable with character semantics is determined by the number of bytes
required to store each character for the chosen character set, with an upper limit of
2000 bytes. The length semantics are determined by the length qualifiers CHAR or
BYTE, and if not explicitly stated, the value of the NLS_LENGTH_SEMANTICS
environment variable is applied to the bind variable. Explicitly stating the length
semantics at variable definition stage will always take precedence over the
NLS_LENGTH_SEMANTICS setting.

NCHAR

Creates a variable of type NCHAR (national character) with length one.

NCHAR (n)

Creates a variable of type NCHAR with length n characters. The maximum that n can
be is determined by the number of bytes required to store each character for the
chosen national character set, with an upper limit of 2000 bytes. The only exception to
this is when a SQL*Plus session is connected to a pre Oracle9i server, or the
SQLPLUSCOMPATIBILITY system variable is set to a version less than 9.0.0. In this
case the length n can be in bytes or characters depending on the chosen national
character set, with the upper limit of 2000 bytes still retained.

VARCHAR2 (n[CHAR | BYTE])

Creates a variable of type VARCHAR2 with length of up to n bytes or n characters.
The maximum that n can be is 32k bytes (see note), and the minimum is 1 byte or 1
character. The maximum n for a VARCHAR2 variable with character semantics is
determined by the number of bytes required to store each character for the chosen
character set, with an upper limit of 32k bytes. The length semantics are determined
by the length qualifiers CHAR or BYTE, and if not explicitly stated, the value of the
NLS_LENGTH_SEMANTICS environment variable is applied to the bind variable.
Explicitly stating the length semantics at variable definition stage will always take
precedence over the NLS_LENGTH_SEMANTICS setting.

Note:

By default, the maximum VARCHAR2 length is 4000 bytes. Attempting to
use a maximum length greater than 4000 bytes raises ORA-01460 :
unimplemented or unreasonable conversion requested

To enable 32k maximum length, you must add the
MAX_STRING_SIZE=extended parameter to your init.ora file.

NVARCHAR2 (n)

Chapter 13
VARIABLE

13-145

Creates a variable of type NVARCHAR2 with length of up to n characters. The
maximum that n can be is determined by the number of bytes required to store each
character for the chosen national character set, with an upper limit of 32k bytes (see
note). The only exception to this is when a SQL*Plus session is connected to a pre
Oracle9i server, or the SQLPLUSCOMPATIBILITY system variable is set to a version
less than 9.0.0. In this case the length n can be in bytes or characters depending on
the chosen national character set, with the upper limit of 32k bytes still retained.

Note:

By default, , the maximum NVARCHAR2 length is 4000 bytes. Attempting to
use a maximum length greater than 4000 bytes raises ORA-01460 :
unimplemented or unreasonable conversion requested

To enable 32k maximum length, you must add the
MAX_STRING_SIZE=extended parameter to your init.ora file.

CLOB

Creates a variable of type CLOB.

NCLOB

Creates a variable of type NCLOB.

REFCURSOR

Creates a variable of type REF CURSOR.

BINARY_FLOAT

Creates a variable of type BINARY_FLOAT. BINARY_FLOAT is a floating-point
number that conforms substantially with the Institute for Electrical and Electronics
Engineers (IEEE) Standard for Binary Floating-Point Arithmetic, IEEE Standard
754-1985.

BINARY_DOUBLE

Creates a variable of type BINARY_DOUBLE. BINARY_DOUBLE is a floating-point
number that conforms substantially with the Institute for Electrical and Electronics
Engineers (IEEE) Standard for Binary Floating-Point Arithmetic, IEEE Standard
754-1985.

Usage

Bind variables may be used as parameters to stored procedures, or may be directly
referenced in anonymous PL/SQL blocks.

To display the value of a bind variable created with VARIABLE, use the PRINT
command. See PRINT for more information.

To automatically display the value of a bind variable created with VARIABLE, use the
SET AUTOPRINT command. See SET AUTOP[RINT] {ON | OFF} for more
information.

Chapter 13
VARIABLE

13-146

Bind variables cannot be used in the COPY command or SQL statements, except in
PL/SQL blocks. Instead, use substitution variables.

When you execute a VARIABLE ... CLOB or NCLOB command, SQL*Plus associates
a LOB locator with the bind variable. The LOB locator is automatically populated when
you execute a SELECT clob_column INTO :cv statement in a PL/SQL block. SQL*Plus
closes the LOB locator when you exit SQL*Plus.

To free resources used by CLOB and NCLOB bind variables, you may need to
manually free temporary LOBs with:

EXECUTE DBMS_LOB.FREETEMPORARY(:cv)

All temporary LOBs are freed when you exit SQL*Plus.

SQL*Plus SET commands such as SET LONG and SET LONGCHUNKSIZE and SET
LOBOFFSET may be used to control the size of the buffer while PRINTing CLOB or
NCLOB bind variables.

SQL*Plus REFCURSOR bind variables may be used to reference PL/SQL 2.3 or
higher Cursor Variables, allowing PL/SQL output to be formatted by SQL*Plus. For
more information on PL/SQL Cursor Variables, see Cursor Variables.

When you execute a VARIABLE ... REFCURSOR command, SQL*Plus creates a
cursor bind variable. The cursor is automatically opened by an OPEN ... FOR SELECT
statement referencing the bind variable in a PL/SQL block. SQL*Plus closes the cursor
after completing a PRINT statement for that bind variable, or on exit.

SQL*Plus formatting commands such as BREAK, COLUMN, COMPUTE and SET
may be used to format the output from PRINTing a REFCURSOR.

A REFCURSOR bind variable may not be PRINTed more than once without re-
executing the PL/SQL OPEN ... FOR statement.

Examples

The following example illustrates creating a bind variable, changing its value, and
displaying its current value.

To create a bind variable, enter:

VARIABLE ret_val NUMBER

To change this bind variable in SQL*Plus, you must use a PL/SQL block:

BEGIN
 :ret_val:=4;
END;
/

PL/SQL procedure successfully completed.

To display the value of the bind variable in SQL*Plus, enter:

Chapter 13
VARIABLE

13-147

PRINT ret_val

 RET_VAL

 4

The following example illustrates creating a bind variable and then setting it to the
value returned by a function:

VARIABLE id NUMBER
BEGIN
 :id := EMP_MANAGEMENT.HIRE
 ('BLAKE','MANAGER','KING',2990,'SALES');
END;
/

The value returned by the stored procedure is being placed in the bind variable, :id. It
can be displayed with the PRINT command or used in subsequent PL/SQL
subprograms.

The following example illustrates automatically displaying a bind variable:

SET AUTOPRINT ON
VARIABLE a REFCURSOR
BEGIN
 OPEN :a FOR SELECT LAST_NAME, CITY, DEPARTMENT_ID
 FROM EMP_DETAILS_VIEW
 WHERE SALARY > 12000
 ORDER BY DEPARTMENT_ID;
END;
/

PL/SQL procedure successfully completed.
LAST_NAME CITY DEPARTMENT_ID
------------------------- ------------------------------ -------------
Hartstein Toronto 20
Russell Oxford 80
Partners Oxford 80
King Seattle 90
Kochhar Seattle 90
De Haan Seattle 90

6 rows selected.

In the above example, there is no need to issue a PRINT command to display the
variable.

The following example creates some variables:

VARIABLE id NUMBER
VARIABLE txt CHAR (20)
VARIABLE myvar REFCURSOR

Enter VARIABLE with no arguments to list the defined variables:

Chapter 13
VARIABLE

13-148

VARIABLE

variable id
datatype NUMBER

variable txt
datatype CHAR(20)

variable myvar
datatype REFCURSOR

The following example lists a single variable:

VARIABLE txt

variable txt
datatype CHAR(20)

The following example illustrates assigning a value to a variable for input binding:

VARIABLE tmp_var VARCHAR2(10)=Smith

The following example illustrates an alternate method to achieve the same result as
the previous example:

VARIABLE tmp_var VARCHAR2(10)
VARIABLE tmp_var=Smith
EXECUTE DBMS_OUTPUT.PUT_LINE(:tmp_var)

The following example illustrates producing a report listing individual salaries and
computing the departmental salary cost for employees who earn more than $12,000
per month:

VARIABLE rc REFCURSOR
BEGIN
 OPEN :rc FOR SELECT DEPARTMENT_NAME, LAST_NAME, SALARY
 FROM EMP_DETAILS_VIEW
 WHERE SALARY > 12000
 ORDER BY DEPARTMENT_NAME, LAST_NAME;
END;
/

PL/SQL procedure successfully completed.

SET PAGESIZE 100 FEEDBACK OFF
TTITLE LEFT '*** Departmental Salary Bill ***' SKIP 2
COLUMN SALARY FORMAT $999,990.99 HEADING 'Salary'
COLUMN DEPARTMENT_NAME HEADING 'Department'
COLUMN LAST_NAME HEADING 'Employee'
COMPUTE SUM LABEL 'Subtotal:' OF SALARY ON DEPARTMENT_NAME
COMPUTE SUM LABEL 'Total:' OF SALARY ON REPORT
BREAK ON DEPARTMENT_NAME SKIP 1 ON REPORT SKIP 1
PRINT rc

*** Departmental Salary Bill ***

Chapter 13
VARIABLE

13-149

DEPARTMENT_NAME Employee Salary
------------------------------ ------------------------- ------------
Executive De Haan $17,000.00
 King $24,000.00
 Kochhar $17,000.00
****************************** ------------
Subtotal: $58,000.00

Marketing Hartstein $13,000.00
****************************** ------------
Subtotal: $13,000.00

Sales Partners $13,500.00
 Russell $14,000.00
****************************** ------------
Subtotal: $27,500.00

Total: $98,500.00

The following example illustrates how to create an input bind to insert CLOB data into
a CLOB column:

SQL> create table xyz (col1 clob);

Table created.

SQL> var abc varchar2(100)="This is a clob input"
SQL> insert into xyz values(:abc);

1 row created.

The following example illustrates producing a report containing a CLOB column, and
then displaying it with the SET LOBOFFSET command.

Assume you have already created a table named clob_tab which contains a column
named clob_col of type CLOB. The clob_col contains the following data:

Remember to run the Departmental Salary Bill report each month. This report
contains confidential information.

To produce a report listing the data in the col_clob column, enter

VARIABLE T CLOB
BEGIN
 SELECT CLOB_COL INTO :T FROM CLOB_TAB;
END;
/

PL/SQL PROCEDURE SUCCESSFULLY COMPLETED

To print 200 characters from the column clob_col, enter

Chapter 13
VARIABLE

13-150

SET LINESIZE 70
SET LONG 200
PRINT T

T
--
Remember to run the Departmental Salary Bill report each month This r
eport contains confidential information.

To set the printing position to the 21st character, enter

SET LOBOFFSET 21
PRINT T

T
--
Departmental Salary Bill report each month This report contains confi
dential information.

13.52 WHENEVER OSERROR
Syntax

WHENEVER OSERROR {EXIT [SUCCESS | FAILURE | n | variable | :BindVariable] [COMMIT |
ROLLBACK] | CONTINUE [COMMIT | ROLLBACK | NONE]}

Performs the specified action (exits SQL*Plus by default) if an operating system error
occurs (such as a file writing error).

Terms

 [SUCCESS | FAILURE | n | variable | :BindVariable]

Directs SQL*Plus to perform the specified action as soon as an operating system error
is detected. You can also specify that SQL*Plus return a success or failure code, the
operating system failure code, or a number or variable of your choice.

EXIT [SUCCESS | FAILURE | n | variable | :BindVariable]

Directs SQL*Plus to exit as soon as an operating system error is detected. You can
also specify that SQL*Plus return a success or failure code, the operating system
failure code, or a number or variable of your choice. See EXIT for more information.

CONTINUE

Turns off the EXIT option.

COMMIT

Directs SQL*Plus to execute a COMMIT before exiting or continuing and save pending
changes to the database.

ROLLBACK

Directs SQL*Plus to execute a ROLLBACK before exiting or continuing and abandon
pending changes to the database.

Chapter 13
WHENEVER OSERROR

13-151

NONE

Directs SQL*Plus to take no action before continuing.

Usage

If you do not enter the WHENEVER OSERROR command, the default behavior of
SQL*Plus is to continue and take no action when an operating system error occurs.

If you do not enter the WHENEVER SQLERROR command, the default behavior of
SQL*Plus is to continue and take no action when a SQL error occurs.

Examples

If a failure occurs when reading from the output file, the commands in the following
script cause SQL*Plus to exit and COMMIT any pending changes:

WHENEVER OSERROR EXIT
START no_such_file

OS Message: No such file or directory
Disconnected from Oracle......

13.53 WHENEVER SQLERROR
Syntax

WHENEVER SQLERROR {EXIT [SUCCESS | FAILURE | WARNING | n | variable
| :BindVariable] [COMMIT | ROLLBACK] | CONTINUE [COMMIT | ROLLBACK | NONE]}

Performs the specified action (exits SQL*Plus by default) if a SQL command or
PL/SQL block generates an error.

Terms

 [SUCCESS | FAILURE | WARNING | n | variable | :BindVariable]

Directs SQL*Plus to perform the specified action as soon as it detects a SQL
command or PL/SQL block error (but after printing the error message). SQL*Plus will
not exit on a SQL*Plus error.

EXIT [SUCCESS | FAILURE | WARNING | n | variable | :BindVariable]

Directs SQL*Plus to exit as soon as it detects a SQL command or PL/SQL block error
(but after printing the error message). SQL*Plus will not exit on a SQL*Plus error. The
EXIT clause of WHENEVER SQLERROR follows the same syntax as the EXIT
command. See EXIT for more information.

CONTINUE

Turns off the EXIT option.

COMMIT

Directs SQL*Plus to execute a COMMIT before exiting or continuing and save pending
changes to the database.

ROLLBACK

Chapter 13
WHENEVER SQLERROR

13-152

Directs SQL*Plus to execute a ROLLBACK before exiting or continuing and abandon
pending changes to the database.

NONE

Directs SQL*Plus to take no action before continuing.

Usage

The WHENEVER SQLERROR command is triggered by SQL command or PL/SQL
block errors, and not by SQL*Plus command errors.

Examples

The commands in the following script cause SQL*Plus to exit and return the SQL error
code if the SQL UPDATE command fails:

WHENEVER SQLERROR EXIT SQL.SQLCODE
UPDATE EMP_DETAILS_VIEW SET SALARY = SALARY*1.1;

The following examples show that the WHENEVER SQLERROR command is not
executed after errors with SQL*Plus commands, but it is executed if SQL commands
or PL/SQL blocks cause errors:

WHENEVER SQLERROR EXIT SQL.SQLCODE
column LAST_name headIing "Employee Name"

Unknown COLUMN option "headiing"

SHOW non_existed_option

The following PL/SQL block error causes SQL*Plus to exit and return the SQL error
code:

WHENEVER SQLERROR EXIT SQL.SQLCODE
begin
 SELECT COLUMN_DOES_NOT_EXIST FROM DUAL;
END;
/

SELECT COLUMN_DOES_NOT_EXIST FROM DUAL;
 *
ERROR at line 2:
ORA-06550: line 2, column 10:
PLS-00201: identifier 'COLUMN_DOES_NOT_EXIST' must be declared
ORA-06550: line 2, column 3:
PL/SQL: SQL Statement ignored

Disconnected from Oracle.....

13.54 XQUERY
Syntax

XQUERY xquery_statement

Chapter 13
XQUERY

13-153

The SQL*Plus XQUERY command enables you to perform an XQuery 1.0 query on a
specified database. XQUERY is supported on Oracle Database 10g (Release 2) and
later versions. Attempting to use XQUERY on an earlier version of the Oracle
Database gives the error:

SP2-614 Server version too low

Terms

xquery_statement

Specifies the XQuery statement you want to run. The statement is entered with
standard XQuery syntax. The XQUERY statement is terminated with a forward slash,
'/'.

Usage

Prefix your XQuery statement with the SQL*Plus command, XQUERY, and terminate
the XQUERY command with a slash (/). XQUERY is a SQL*Plus keyword. If XQueries
are executed in other tools, the keyword may not be needed.

XML output from the XQUERY command is displayed as native XML according to the
active SET command options. SET LONG typically needs to be set. It may be useful to
consider the following settings:

• Linesize for rows longer than the default 80 characters (SET LINESIZE).

• LOB, LONG and XML Type Size for rows longer than the default 80 characters
(SET LONG).

• Output Page Setup to match output (SET PAGESIZE).

• Display Headings to repress the "Result Sequence" column heading (SET
HEADING OFF).

The XQUERY command requires an active database connection. The command will
not work with SQLPLUS /NOLOG.

Bind variables are not supported in the XQUERY command.

There are four SET commands specific to the XQUERY command. The SHOW
XQUERY command gives the status of these settings. They are:

• SET XQUERY BASEURI {text}

• SET XQUERY ORDERING {UNORDERED | ORDERED | DEFAULT}

• SET XQUERY NODE {BYVALUE | BYREFERENCE | DEFAULT}

• SET XQUERY CONTEXT {text}

Examples

The XQuery statement in the following script queries the EMP_DETAILS_VIEW view
of the HR schema:

set long 160
set linesize 160

Chapter 13
XQUERY

13-154

xquery for $i in fn:collection("oradb:/SCOTT/EMP_DETAILS_VIEW") return $i
/

Result Sequence

<ROW><EMPNO>7369</EMPNO><ENAME>SMITH</ENAME><JOB>CLERK</JOB><MGR>7902</
MGR><HIREDATE>17-
DEC-80</HIREDATE><SAL>800</SAL><DEPTNO>20</DEPTNO></ROW>

14 item(s) selected.

Chapter 13
XQUERY

13-155

14
SQL*Plus Error Messages

This appendix lists error messages with prefixes SP2- and CPY- generated by
SQL*Plus:

• SQL*Plus Error Messages

• COPY Command Messages

For error messages with prefixes such as ORA-, TNS- and PLS- generated by Oracle
Database, see the Oracle Database Error Messages guide.

14.1 SQL*Plus Error Messages
SP2-0002 ACCEPT statement must specify a variable name
Cause: Required variable name was missing after the ACCEPT command.

Action: Re-enter the ACCEPT command with a variable argument to store the input
value.

SP2-0003 Ill-formed ACCEPT command starting as command_string
Cause: An invalid option was used in the ACCEPT command.

Action: Check the syntax of the ACCEPT command for the correct option.

SP2-0004 Nothing to append
Cause: There was no specified text entered after the APPEND command.

Action: Re-enter the APPEND command with the specified text.

SP2-0006 not enough room to format computations
Cause: Unable to allocate memory to format computations.

Action: Free up additional memory by: closing applications not required; reducing the
size of the command, or statement; or by recoding the query to select fewer records.

SP2-0015 no break(s) defined
Cause: There was no break defined.

Action: Define a break. Check the syntax of the BREAK command for the correct
options.

SP2-0016 break specification must start with ON/BY or ACROSS keyword
Cause: An invalid option was used in the BREAK command.

Action: Check the syntax of the BREAK command for the correct options.

SP2-0017 missing column name after keyword_name keyword
Cause: There was no column name after the specified keyword.

Action: Enter a column name after the specified keyword.

14-1

SP2-0019 invalid numeric argument to option_name option
Cause: An invalid numeric argument was used in the specified option.

Action: Correct the argument and try again.

SP2-0020 no storage available for column_name
Cause: An error has occurred. SQL*Plus was unable to allocate memory for a BREAK
command.

Action: Allocate more memory by closing some applications.

SP2-0022 cannot allocate space to modify the buffer_name buffer variable
Cause: An internal error occurred.

Action: Free up additional memory by: closing applications not required; reducing the
size of the command, or statement; or by recoding the query to select fewer records.

SP2-0023 String not found
Cause: The search string specified was not found.

Action: Check the search string to make sure that it is valid.

SP2-0024 Nothing to change
Cause: There was nothing in the SQL buffer when using the CHANGE command.

Action: Make sure the SQL buffer is not empty before using the CHANGE command.

SP2-0025 Invalid change string
Cause: An invalid option was used in the CHANGE command.

Action: Check the syntax of the CHANGE command for the correct options.

SP2-0026 No lines to delete
Cause: There was nothing in the SQL buffer when using the DEL command.

Action: Make sure the SQL buffer is not empty before using the DEL command.

SP2-0027 Input is too long (> max_characters characters) - line ignored
Cause: The input value specified was too long.

Action: Re-enter with fewer characters.

SP2-0029 command buffer space exhausted
Cause: A large SQL or PL/SQL script is being executed from SQL*Plus.

Action: Reduce the size of the SQL statement or PL/SQL block by one of the
following:

• Remove extra white space and comments.

• Re-code to use fewer commands and/or shorter variable names.

• Place sections of the block into stored (or packaged) procedures, and then call
these procedures from the block.

SP2-0030 no room for another line
Cause: The maximum number of lines in a SQL statement or PL/SQL block has been
exceeded.

Chapter 14
SQL*Plus Error Messages

14-2

Action: Reduce the number of lines and try again.

SP2-0038 Command too long. (max_characters characters)
Cause: The specified command entered was too long.

Action: Check the command syntax for the limitation.

SP2-0039 command-line overflow while substituting into command_name
Cause: The maximum length of the command line has been exceeded.

Action: Reduce the length of the data in the substitution variables used in the
command.

SP2-0042 unknown command command_name - rest of line ignored
Cause: The command entered was not valid.

Action: Check the syntax of the command you used for the correct options.

SP2-0044 For a list of known commands enter HELP and to leave enter EXIT
Cause: An unknown command was entered.

Action: Check the syntax of the command you used for the correct options.

SP2-0045 no column_name defined
Cause: No columns have been defined.

Action: No action required.

SP2-0046 column_name not defined
Cause: The column name specified was not defined.

Action: Retry with a valid column name.

SP2-0047 Invalid number for option_name option
Cause: An invalid number was used for this option.

Action: Re-try the operation with a valid number.

SP2-0052 like column_name, column_name not defined
Cause: The column which the format is based on was not defined.

Action: Use the COLUMN command to make sure the column the format is based on
is defined first.

SP2-0054 no room to allocate definition_name definition. Ignored
Cause: Unable to allocate memory to process the COLUMN command.

Action: Free up additional memory by: closing applications not required; reducing the
size of the command, or statement; or by recoding the query to select fewer records.

SP2-0055 out of room while allocating portion of new definition_name. Old
definition (if any) retained
Cause: Unable to allocate memory to store the new definition.

Action: Free up additional memory by: closing applications not required; reducing the
size of the command, or statement; or by recoding the query to select fewer records.

Chapter 14
SQL*Plus Error Messages

14-3

SP2-0080 no COMPUTES currently defined
Cause: No COMPUTE definition.

Action: Define a COMPUTE. Check the syntax of the COMPUTE command for the
correct options.

SP2-0081 maximum of number COMPUTE functions allowed at a time
Cause: The maximum number of COMPUTE functions has been exceeded.

Action: Reduce the number of COMPUTE functions.

SP2-0082 no COMPUTE functions requested
Cause: No COMPUTE functions requested.

Action: No action required.

SP2-0083 warning: COMPUTE option function_name specified number times
Cause: A label or a function was specified more than once.

Action: Remove the unnecessary labels or functions.

SP2-0084 COMPUTE ON keyword specified already
Cause: The ON keyword was specified more than once.

Action: Specify the ON keyword once in the command.

SP2-0085 COMPUTE OF keyword specified already
Cause: The OF keyword was specified more than once.

Action: Specify the OF keyword once in the command.

SP2-0087 no room to allocate COMPUTE control block for column_name
Cause: Unable to allocate memory to process the COMPUTE command.

Action: Free up additional memory by: closing applications not required; reducing the
size of the command, or statement; or by recoding the query to select fewer records.

SP2-0088 missing keyword_name keyword. Usage: STORE {SET} filename[.ext]
[CRE[ATE]|REP[LACE]|APP[END]]
Cause: Missing a keyword in the statement.

Action: Check the syntax of the command you used for the correct options, and use
the keyword in the appropriate place.

SP2-0092 missing columns for keyword_name keyword
Cause: The column name was not specified for the keyword.

Action: Specify the column name and try again.

SP2-0096 no more room to allocate INTO variable variable_name
Cause: Unable to allocate memory to process the COMPUTE command.

Action: Free up additional memory by: closing applications not required; reducing the
size of the command, or statement; or by recoding the query to select fewer records.

SP2-0097 no storage to allocate ON column column_name
Cause: Unable to allocate memory to process the COMPUTE command.

Chapter 14
SQL*Plus Error Messages

14-4

Action: Free up additional memory by: closing applications not required; reducing the
size of the command, or statement; or by recoding the query to select fewer records.

SP2-0098 no storage to allocate COMPUTE block for column_name
Cause: Unable to allocate memory to process the COMPUTE command.

Action: Free up additional memory by: closing applications not required; reducing the
size of the command, or statement; or by recoding the query to select fewer records.

SP2-0103 Nothing in SQL buffer to run
Cause: Nothing was in the SQL buffer to run.

Action: Enter a valid SQL command. SQL*Plus commands are not stored in the SQL
buffer.

SP2-0105 Illegal, or missing, entity name
Cause: File name was not specified in the GET or SAVE commands.

Action: Specify a file name and try again.

SP2-0107 Nothing to save
Cause: Nothing in the SQL buffer when attempting to save the content to a file.

Action: Enter a SQL command to save. SQL*Plus commands are not stored in the
SQL buffer.

SP2-0108 The filenames CREATE, REPLACE, APPEND, FILE and abbreviations
may not be used
Cause: An attempt was made to enter a filename using the word FILE, or one of the
command keywords CREATE, REPLACE, APPEND, or one of their abbreviations.
The filename specified in the command was not permitted.

Action: Check the following command syntax and enter a valid filename:
command filename[.ext] [CR[EATE]|REP[LACE]|AP[PEND]]
where command can be SAVE, SPOOL or STORE SET
To use the command keywords CREATE, REPLACE, APPEND or one of their
abbreviations as the filename, or to use the word FILE as the filename, you must
enclose it in single quotes.

SP2-0109 Cannot append to file file_name
Cause: An attempt was made to append the content of the SQL buffer to a file and the
file could not be written. Possible causes:

• An error was encountered when creating the destination file.

• A directory name specified in the SAVE statement was not found.

• A system error made it impossible to open the file.

Action: Take the following actions:

• Check that the destination is valid and that there is sufficient space on the
destination device.

• Check the statement for a typing mistake in the directory name. Then issue the
statement again after correcting the directory name.

Chapter 14
SQL*Plus Error Messages

14-5

SP2-0110 Cannot create save file file_name
Cause: An attempt was made to save the content of the SQL buffer to a file and the
file could not be written. Possible causes:

• An error was encountered when creating the destination file.

• A directory name specified in the SAVE statement was not found.

• A system error made it impossible to open the file.

Action: Take the following actions:

• Check that the destination is valid and that there is sufficient space on the
destination device.

• Check the statement for a typing mistake in the directory name. Then issue the
statement again after correcting the directory name.

SP2-0111 Cannot close save file file_name
Cause: The file was in use.

Action: Release the file from the other process.

SP2-0116 Illegal SAVE command
Cause: An invalid option was used in the SAVE command.

Action: Check the syntax of the SAVE command for the correct options.

SP2-0134 no symbols currently defined
Cause: No DEFINE symbols were defined.

Action: No action required.

SP2-0135 Symbol symbol_name is UNDEFINED
Cause: The specified symbol was undefined.

Action: Re-enter the DEFINE command with an assignment clause or a valid symbol
or variable name.

SP2-0136 DEFINE requires an equal sign (=)
Cause: Expecting an equal sign after a symbol or variable name in the DEFINE
command.

Action: Specify an equal sign after the symbol or variable name.

SP2-0137 DEFINE requires a value following equal sign
Cause: There was no value for the variable or symbol. SQL*Plus expected a value to
be assigned to a symbol or variable name after the equal sign.

Action: Specify a value for the symbol or variable.

SP2-0138 no room to add substitution variable variable
Cause: Maximum number of variables that can be defined in a SQL*Plus session was
exceeded.

Action: UNDEFINE any unused variables to make room for this variable and re-run
the command.

Chapter 14
SQL*Plus Error Messages

14-6

SP2-0146 Unable to allocate dynamic space needed (number_of_bytes bytes) -
exiting
Cause: An internal error occurred.

Action: Note the message and number, and contact the System Administrator.

SP2-0152 ORACLE may not be functioning properly
Cause: Unable to initialize a session to the Oracle instance.

Action: Make a note of the message and the number, then contact the Database
Administrator.

SP2-0157 unable to CONNECT to ORACLE after 3 attempts, exiting SQL*Plus
Cause: Unable to connect to Oracle after three attempts.

Action: Validate login details and re-try.

SP2-0158 unknown command_name option "option_name"
Cause: An invalid option was specified for the given command.

Action: Check the syntax of the command you used for the correct options.

SP2-0160 Unable to open file_name
Cause: Possible causes:

• The file was not found under the specified name in the specified location.

• File lacked the necessary privileges to open the file.

• A system error made it impossible to open the file.

Action: Take the following actions:

• Make sure the file name specified is stored in the appropriate directory.

• Make sure that the file has the privileges necessary for access. If it does not then
change privileges accordingly.

• Consult operating system documentation or contact the System Administrator.

SP2-0161 line line_number truncated
Cause: The line in the file was too long.

Action: No action required or reduce the length of the line.

SP2-0162 unable to close file_name
Cause: Unable to close the specified file as it was being used.

Action: Release the file from the other process.

SP2-0171 HELP system not available
Cause: Command-line SQL*Plus help is not installed in this Oracle instance.

Action: Command-line SQL*Plus help is not installed in this Oracle instance. Use the
sqlplus/admin/help/hlpbld.sql script to install HELP on this database:

sqlplus system @hlpbld.sql helpus.sql

SP2-0172 No HELP matching this topic was found.
Cause: There is no help information available for the specified command.

Chapter 14
SQL*Plus Error Messages

14-7

Action: Enter HELP INDEX for a list of topics.

SP2-0176 Option ? Is invalid
Cause: The option ? is not valid in this command.

Action: Check the syntax of the command you used for the correct options.

SP2-0187 error in variable assignment
Cause: The assignment for the specified variable was incorrect.

Action: Check the syntax of the ACCEPT command for the correct options.

SP2-0223 No lines in buffer_name buffer
Cause: There are no lines stored in the buffer.

Action: Enter SQL statements into the buffer.

SP2-0224 invalid starting line number
Cause: The line number specified was incorrect.

Action: Check that the line number is correct and try again.

SP2-0225 invalid ending line number
Cause: The line number specified was incorrect.

Action: Check that the line number is correct and try again.

SP2-0226 Invalid line number current_line_number
Cause: Invalid line number was specified.

Action: Re-enter with a valid line number.

SP2-0232 Input too long. Must be less than number_of_characters characters
Cause: The input value was too long.

Action: Reduce the size of the value and re-enter.

SP2-0233 Unable to obtain userid after number_of_attempts attempts. Retry
command
Cause: SQL*Plus was unable to login after three attempts.

Action: Make sure the userid and password is correct and try again.

SP2-0240 Enter value for variable_name:
Cause: SQL*Plus was unable to find a value for a substitution variable.

Action: Enter a value for the substitution variable at the prompt.

SP2-0241 No room for symbol symbol_name (not defined)
Cause: Unable to allocate memory for the symbol.

Action: Free up additional memory by: closing applications not required; reducing the
size of the command, or statement; or by recoding the query to select fewer records.

SP2-0244 Cannot issue a PRINT command within a PAGE break
Cause: The PRINT command is not allowed within a PAGE break.

Chapter 14
SQL*Plus Error Messages

14-8

Action: Check the syntax of the PRINT command for the correct options.

SP2-0245 Unable to allocate temporary storage for printing
Cause: Unable to allocate temporary storage for printing.

Action: Free up additional memory by: closing applications not required; reducing the
size of the command, or statement; or by recoding the query to select fewer records.

SP2-0246 Illegal FORMAT string column_ format_name
Cause: An invalid format was specified for the column.

Action: Specify a valid format for the column.

SP2-0249 variable_name not a valid variable type for printing
Cause: The specified variable is not valid for printing.

Action: Check the variable type before re-typing the command.

SP2-0253 data item line_number (data_item_name) will not fit on line
Cause: The current line size setting is too small to fit the specified data item on a line.

Action: Increase the line size so that the item can be displayed.

SP2-0258 could not create variable variable_name for column column_name
Cause: The specified variable could not be created for column – internal error or out
of memory.

Action: Check memory usage.

SP2-0259 could not create variable variable_name for COMPUTE INTO
Cause: The specified variable could not be created.

Action: Check the syntax of the command you used for the correct options.

SP2-0260 computation for column column_name not uniquely qualified. could
be for table table_name or table_name. computation ignored.
Cause: The specified column was not uniquely qualified in the statement.

Action: Check the syntax of the command you used for the correct options.

SP2-0262 no room to allocate CCBDEF pointer array
Cause: An internal memory error occurred.

Action: Free up additional memory by: closing applications not required; reducing the
size of the command, or statement; or by recoding the query to select fewer records.

SP2-0263 no room to allocate COMPUTE block for column_name ON page/
report/column_name
Cause: Insufficient memory allocated to the COMPUTE block.

Action: Allocate more memory by closing other applications.

SP2-0265 option_name must be set ON or OFF
Cause: An invalid SET option name was specified.

Action: Re-enter with either ON or OFF as one of the SET options.

Chapter 14
SQL*Plus Error Messages

14-9

SP2-0266 internal error: buffer (buffer_size) smaller than l (buffer_limit)
Cause: An internal error occurred.

Action: Free up additional memory by: closing applications not required; reducing the
size of the command, or statement; or by recoding the query to select fewer records.

SP2-0267 option_name option parameter_number out of range (lower_range
through upper_range)
Cause: A value for a parameter was out of the specified range.

Action: Check the limits of the parameter and enter a value that is within the range.

SP2-0268 option_name option not a valid number
Cause: Non-numeric value (integer) was entered for a parameter.

Action: Enter a valid numeric value (integer).

SP2-0271 variable_name is not a buffer variable
Cause: The specified variable was not defined as a buffer.

Action: Make sure that the buffer variable name is correct and try again.

SP2-0272 character_name character cannot be alphanumeric or white-space
Cause: The specified character in the SET command cannot be alphanumeric or
white-space.

Action: Check the syntax of the command you used for the correct options.

SP2-0277 entered_value value not valid
Cause: The value entered was incorrect.

Action: Re-enter with a valid value.

SP2-0281 option_name missing set option Usage: SET SHIFT[INOUT] [VIS[IBLE|
INV[ISIBLE]] or Usage: SET MARKUP HTML [ON|OFF] [HEAD text] [BODY text]
[TABLE text] [ENTMAP [ON|OFF]] [SPOOL [ON|OFF]] [PRE[FORMAT] [ON|OFF]]
[-M[ARKUP] \"HTML [ON|OFF] [HEAD text] [BODY text]
Cause: SET option was missing in the command.

Action: Check the syntax of the command you used for the correct options.

SP2-0306 Invalid option Usage: CONN[ECT] [login] [AS {SYSDBA|SYSOPER}]
Where <login> ::= <username>[/<password>][@<connect_string>] | / or Usage:
CONN[ECT] username/password[@connect_identifier] [AS {SYSOPER|
SYSDBA}]or: CONN[ECT] /[@connect_identifier] AS {SYSOPER|SYSDBA}
Cause: Invalid option was specified for the command.

Action: Check the syntax of the command you used for the correct options.

SP2-0308 cannot close spool file
Cause: The file is currently being used.

Action: Release the file from the other process.

SP2-0309 SQL*Plus command procedures may only be nested to a depth of
number_of_nested_procedures
Cause: Maximum number of nested procedures or scripts was reached.

Chapter 14
SQL*Plus Error Messages

14-10

Action: Reduce the number of nested procedures or scripts.

SP2-0310 unable to open file file_name
Cause: Unable to open the specified file.

Action: Check and make sure the file name is valid.

SP2-0311 string expected but not found
Cause: SQL*Plus was expecting a string at the end of the command, but could not
find it.

Action: Retry the command with a valid string. Check the syntax of the command you
used for the correct options.

SP2-0312 missing terminating quote (quote_type)
Cause: The DESCRIBE command schema or object did not have a terminating quote.

Action: Close the opening quotation mark with the corresponding closing quotation
mark.

SP2-0317 expected symbol name is missing
Cause: SQL*Plus was expecting a symbol, but it was not specified.

Action: Check the syntax of the command you used for the correct options.

SP2-0318 symbol name beginning variable_name.. is too long (max
max_name_length) Illegal variable name variable_name
Cause: Specified variable name exceeded the maximum name length.

Action: Reduce the size of the symbol name and re-enter.

SP2-0323 no room to add timing element - request denied
Cause: Unable to allocate memory while trying to run the TIMING command.

Action: Free up additional memory by: closing applications not required; reducing the
size of the command, or statement; or by recoding the query to select fewer records.

SP2-0324 operating system timing error error_option_number - request denied
Cause: The TIMING command failed to initialize due to a possible operating system
error.

Action: Resolve the operating system error and try again.

SP2-0325 no timing elements to option_name
Cause: There are no timers recorded to SHOW or STOP.

Action: Check that timers were created with the TIMING command.

SP2-0328 no room to allocate title buffer
Cause: Unable to allocate memory while trying to run the TTITLE or BTITLE
command.

Action: Free up additional memory by: closing applications not required; reducing the
size of the command, or statement; or by recoding the query to select fewer records.

SP2-0331 SPOOL OUT disabled
Cause: An attempt was made to use SPOOL OUT where it is not supported.

Chapter 14
SQL*Plus Error Messages

14-11

Action: No action possible. SPOOL OUT has been disabled possibly because of lack
of printing support at the operating system level.

SP2-0332 Cannot create spool file
Cause: Possible causes:

• Insufficient privileges to create a file.

• A system error made it impossible to create a file.

Action: Take the following actions:

• Change privileges to allow creation of the file.

• Consult the operating system documentation or contact the System Administrator.

SP2-0333 Illegal spool file name: spool_name (bad character: 'character_name')
Cause: An invalid filename was entered in the SPOOL command.

Action: Correct the filename and re-enter.

SP2-0341 line overflow during variable substitution (>number_of_characters
characters at line line_number)
Cause: The maximum number of characters was exceeded in the SQL buffer after the
substitution variable was expanded.

Action: Reduce the length in the substitution variable and try again.

SP2-0357 Out of temporary storage
Cause: Unable to allocate memory while trying to run the command.

Action: Free up additional memory by: closing applications not required; reducing the
size of the command, or statement; or by recoding the query to select fewer records.

SP2-0359 memory exhausted
Cause: Unable to allocate memory while trying to run the command.

Action: Free up additional memory by: closing applications not required; reducing the
size of the command, or statement; or by recoding the query to select fewer records.

SP2-0381 command_name is not available
Cause: The command specified is not implemented.

Action: Use the appropriate SQL*Plus command. See the documentation for a list of
commands and their correct syntax.

SP2-0382 The command_name command is not available
Cause: The command was not recognized, or it is disabled. This occurs if it is a
command that does not have any meaning in SQL*Plus (such as a SQL buffer editing
command), or it is not allowed for security reasons.

Action: Remove the command from the script. See the documentation for a list of
commands and their correct syntax.

SP2-0392 Cannot UNDEFINE the current edit buffer
Cause: The current edit buffer cannot be undefined.

Action: No action required.

Chapter 14
SQL*Plus Error Messages

14-12

SP2-0394 Illegal buffer name: buffer_name
Cause: A buffer name contained an illegal character, for example hyphen (-).

Action: Correct and remove the illegal character from the buffer name.

SP2-0423 Illegal GET command
Cause: An invalid option was used in the GET command.

Action: Check the syntax of the command you used for the correct options.

SP2-0425 value is not a valid datatype
Cause: The value entered in the ACCEPT command was not valid for the specified
datatype.

Action: Enter a valid value, e.g. 123 for a NUMBER variable.

SP2-0426 Input truncated to number_of_characters characters
Cause: There was no carriage return at the last line of the SQL statement.

Action: Insert a carriage return.

SP2-0495 FROM and TO clauses both missing; specify at least one
Cause: The FROM and TO clauses were missing from the COPY statement.

Action: Specify at least one clause. Check the syntax of the command you used for
the correct options.

SP2-0496 Misplaced FROM clause
Cause: The FROM keyword was in the wrong position in the COPY command.

Action: Check the syntax of the COPY command for the correct options.

SP2-0497 Misplaced TO clause
Cause: The TO keyword was in the wrong position in the COPY command.

Action: Check the syntax of the COPY command for the correct options.

SP2-0498 Missing parenthetical column list or USING keyword
Cause: A parenthetical list was missing in the column list or the USING keyword is
missing in the COPY command.

Action: Check the syntax of the COPY command for the correct options.

SP2-0499 Misplaced APPEND keyword
Cause: The APPEND keyword was in the wrong position in the COPY command.

Action: Check the syntax of the COPY command for the correct options.

SP2-0501 Error in SELECT statement: Oracle_database_error_message
Cause: Invalid SELECT statement found in the COPY command.

Action: Check the syntax of the COPY command for the correct options.

SP2-0513 Misplaced CREATE keyword
Cause: The CREATE keyword was in the wrong position in the COPY command.

Action: Check the syntax of the COPY command for the correct options.

Chapter 14
SQL*Plus Error Messages

14-13

SP2-0514 Misplaced REPLACE keyword
Cause: The REPLACE keyword was in the wrong position in the COPY command.

Action: Check the syntax of the COPY command for the correct options.

SP2-0515 Maximum number of columns (max_num_columns) exceeded
Cause: The maximum number of columns was exceeded in the COPY command.

Action: Reduce the number of columns and try again.

SP2-0516 Invalid command_name name NULL encountered
Cause: An invalid or null column name was specified in either the COLUMN or the
ATTRIBUTE command.

Action: Retry the operation with a valid column name.

SP2-0517 Missing comma or right parenthesis
Cause: A missing right parenthesis was identified in the COPY command.

Action: Retry the operation with a comma or right parenthesis.

SP2-0518 Missing USING clause
Cause: USING keyword is missing in the USING clause of the COPY command.

Action: Specify the USING keyword before the USING clause of the COPY command.

SP2-0519 FROM string missing Oracle Net @database specification
Cause: Missing connect string for the database that contains the data to be copied
from in the COPY command.

Action: Include a FROM clause to specify a source database other than the default.

SP2-0520 TO string missing Oracle Net @database specification
Cause: Missing connect string for the database containing the destination table in the
COPY command.

Action: Include a TO clause to specify a source database other than the default.

SP2-0526 Misplaced INSERT keyword
Cause: The INSERT keyword was misplaced in the COPY command.

Action: Check the syntax of the COPY command for the correct options.

SP2-0540 File file_name already exists. Use SAVE filename[.ext] REPLACE
Cause: The file specified already exists.

Action: Use the REPLACE option to overwrite the existing file, or specify another file
name.

SP2-0544 Command command_name disabled in Product User Profile
Cause: An attempt was made to use a command that has been explicitly disabled for
your schema in this database.

Action: Ask your System Administrator why the Product User Profile (PUP) table has
been set to disable this command for your schema.

Chapter 14
SQL*Plus Error Messages

14-14

SP2-0545 SET command requires an argument
Cause: An argument was missing in the SET command.

Action: Check the syntax of the SET command for the correct options.

SP2-0546 User requested Interrupt or EOF detected
Cause: Either end-of-file was reached, or CTRL-C was entered to cancel the process.

Action: No action required.

SP2-0547 option_name option value out of range (lower_value through
upper_value)
Cause: The specified SET option was out of range.

Action: Enter a value within the SET option range and re-try the SET command.

SP2-0548 Usage: VAR[IABLE] [<variable> [NUMBER | CHAR | CHAR (n [CHAR|
BYTE]) |VARCHAR2 (n [CHAR|BYTE]) | NCHAR | NCHAR (n) |NVARCHAR2 (n) |
CLOB | NCLOB | REFCURSOR |BINARY_FLOAT | BINARY_DOUBLE][=value]]
Cause: Incorrect syntax for the VARIABLE command was entered.

Action: Check the syntax of the VARIABLE command for the correct usage.

SP2-0549 Usage: PRINT [:<variable> ...]
Cause: Incorrect syntax for the PRINT command was entered.

Action: Check the syntax of the PRINT command for the correct usage.

SP2-0550 Usage: SHOW ERRORS [{ANALYTIC VIEW | ATTRIBUTE DIMENSION |
HIERARCHY | FUNCTION | PROCEDURE | PACKAGE | PACKAGE BODY |
TRIGGER | VIEW | TYPE | TYPE BODY | DIMENSION| JAVA SOURCE | JAVA
CLASS} [schema.]name]
Cause: Incorrect syntax for the SHOW ERRORS command was entered.

Action: Check the syntax of the SHOW ERRORS command for the correct options.

SP2-0552 Bind variable variable_name not declared
Cause: The specified bind variable was not declared.

Action: Run the VARIABLE command to check that the bind variables you used in
your SQL statement exist. Before running a SQL statement with bind variables, you
must use the VARIABLE command to declare each variable.

SP2-0556 Invalid file name Usage: STORE {SET} filename[.ext] [CRE[ATE]|
REP[LACE]|APP[END]] or Unable to complete EDIT command
Cause: Missing file name or an invalid file name specified.

Action: Make sure that a file name was specified.

SP2-0559 Usage: EXEC[UTE] statement
Cause: Incorrect syntax for the EXECUTE command was entered.

Action: Check the syntax of the EXECUTE command for the correct usage.

SP2-0560 Usage: DESCRIBE [schema.]object[.subobject|@db_link] [column]
Cause: Incorrect syntax for the DESCRIBE command was entered.

Action: Check the syntax of the DESCRIBE command for the correct usage.

Chapter 14
SQL*Plus Error Messages

14-15

SP2-0561 Object does not exist
Cause: The specified object you tried to DESCRIBE does not exist in the database.

Action: Retry the command with a valid object name.

SP2-0562 Object does not exist in package
Cause: The specified object you tried to DESCRIBE does not exist in the package.

Action: Check and make sure that the object name is correct.

SP2-0564 Object object_name is INVALID, it may not be described
Cause: The specified object you tried to DESCRIBE is invalid.

Action: Re-validate the object.

SP2-0565 Illegal identifier
Cause: An invalid character was used in the DESCRIBE command.

Action: Correct the character and try again.

SP2-0566 Illegal sub-object specification
Cause: Invalid sub-object specification in the DESCRIBE command.

Action: Correct the subject specification and try again.

SP2-0567 Illegal column specification for PL/SQL object
Cause: A column was described within an object in the DESCRIBE command.

Action: Remove the column specification in the DESCRIBE command and try again.

SP2-0568 No bind variables declared
Cause: There are no bind variables declared.

Action: No action required.

SP2-0570 Usage: SET SERVEROUTPUT {ON | OFF} [SIZE {n | UNL[IMITED]}]
[FOR[MAT] {WRA[PPED] | WOR[D_WRAPPED] | TRU[NCATED] }]
Cause: An invalid option was used in the SET SERVEROUTPUT command.

Action: Specify a valid option.

SP2-0575 Use of Oracle SQL feature not in SQL92 Entry |Intermediate|Full Level
Cause: A SQL statement was attempted that is not FIPS compliant. May also occur if
a SQL*Plus feature, for example SET AUTOTRACE, that uses Oracle-specific SQL
was turned on when you are using FIPS flagging.

Action: Use SET FLAGGER, and turn FIPS compliance checking OFF, or rewrite the
statement.

SP2-0577 Usage: SET FLAGGER {OFF | ENTRY | INTERMEDIATE | FULL}
Cause: An invalid option was specified in the SET FLAGGER command.

Action: Specify a valid option.

Chapter 14
SQL*Plus Error Messages

14-16

SP2-0581 Object object_name is a package; use 'DESCRIBE
<package>.<procedure>'
Cause: A attempt was made to describe a package as stand-alone, no sub-object
such as a procedure was supplied.

Action: Use the DESCRIBE command to describe a sub-object within a package.

SP2-0582 Usage: {EXIT | QUIT} [SUCCESS | FAILURE | WARNING | n |<variable>
| :<bindvariable>] [COMMIT | ROLLBACK]
Cause: An option to EXIT was invalid in SQL*Plus.

Action: Specify a valid option.

SP2-0584 EXIT variable variable_name was non-numeric
Cause: The specified EXIT variable is non-numeric.

Action: Check the syntax of the EXIT command for the correct usage.

SP2-0590 A COMPUTE function must appear before each LABEL keyword
Cause: The function COMPUTE must appear before each LABEL keyword.

Action: Check the syntax of the COMPUTE command for the correct usage.

SP2-0591 Unable to allocate dynamic space needed (number_of_bytes bytes)
Try reducing ARRAYSIZE or the number of columns selected
Cause: Unable to allocate memory to process the command.

Action: Free up additional memory by: closing applications not required; reducing the
size of the command, or statement; or by recoding the query to select fewer records.

SP2-0593 Label text must follow the LABEL keyword
Cause: Missing label text about the LABEL keyword in the COMPUTE command.

Action: Check the syntax of the COMPUTE command for the correct options.

SP2-0594 Usage: SET COLSEP {" " | text}
Cause: An invalid option was used in the SET COLSEP command.

Action: Specify a valid option.

SP2-0596 Usage: SET AUTO[COMMIT] {OFF | ON | IMM[EDIATE] | n}
Cause: An invalid option was used in the SET AUTO[COMMIT] command.

Action: Check the syntax of the SET AUTOCOMMIT command for the correct options.

SP2-0597 datatype _name is not a valid datatype _name format
Cause: The value entered in the ACCEPT command was not in the specified
datatype.

Action: Correct the datatype and re-enter.

SP2-0598 value_name does not match input format "format_name"
Cause: The value entered in the ACCEPT command was not in the specified format.

Action: Correct the format and try again.

Chapter 14
SQL*Plus Error Messages

14-17

SP2-0599 Usage: SET EDITF[ILE] filename[.ext]
Cause: Required filename was missing after the SET EDITFILE command.

Action: Check the syntax of the SET EDITFILE command for the correct options.

SP2-0603 Usage: Illegal STORE command. Usage: STORE {SET} filename[.ext]
[CRE[ATE]|REP[LACE]|APP[END]]
Cause: An invalid option was used in the STORE command.

Action: Check the syntax of the STORE command for the correct options.

SP2-0605 File file_name already exists. Use another name or STORE {SET}
filename[.ext] REPLACE
Cause: The file specified in the STORE command already exists.

Action: Use the REPLACE option to overwrite the existing file, or specify another file
name.

SP2-0606 Cannot create file_name file
Cause: The STORE command was unable to create the specified file. There may be
insufficient disk space, too many open files, or read-only protection on the output
directory.

Action: Check that there is sufficient disk space and that the protection on the
directory enables file creation.

SP2-0607 Cannot close file_name file
Cause: The STORE command was unable to close the specified file. Another
resource may have locked the file.

Action: Check that the file is not locked before closing it.

SP2-0608 Object object_name is a remote object, cannot further describe
Cause: Unable to DESCRIBE the remote object.

Action: No action required.

SP2-0609 Usage: SET AUTOT[RACE] {OFF | ON | TRACE[ONLY] } [EXP[LAIN]]
[STAT[ISTICS]]
Cause: An invalid option was used in the SET AUTOTRACE command.

Action: Check the syntax of the SET AUTOTRACE command for the correct options.

SP2-0610 Error initializing feature_name
Cause: Not enough memory to enable this feature.

Action: Free up additional memory by closing applications not required, or reduce the
size of the command, statement or query output.

SP2-0612 Error generating report_name report
Cause: Unable to generate the report using AUTOTRACE.

Action: Make a note of the message and the number, then contact the Database
Administrator.

Chapter 14
SQL*Plus Error Messages

14-18

SP2-0613 Unable to verify PLAN_TABLE format or existence Error enabling
autotrace_report report
Cause: An AUTOTRACE command was issued by a user with insufficient privileges,
or who did not have a PLAN_TABLE.

Action: Make sure the user has been granted the PLUSTRACE role, and that a
PLAN_TABLE has been created for the user.

SP2-0614 Server version too low for this feature
Cause: The current version of the Oracle Server is too low for this feature.

Action: Use a higher version of the Oracle Server.

SP2-0617 Cannot construct a unique STATEMENT_ID
Cause: Unable to construct a unique statement ID in AUTOTRACE.

Action: Check that AUTOTRACE is configured and that you have the PLUSTRACE
role enabled.

SP2-0618 Cannot find the Session Identifier. Check PLUSTRACE role is enabled
Error enabling autotrace_report report
Cause: Unable to find the session identifier.

Action: Check that the PLUSTRACE role has been granted.

SP2-0619 Error while connecting
Cause: An error occurred while AUTOTRACE attempted to make a second
connection to the database instance.

Action: Check that the database limit on number of active sessions has not been
exceeded.

SP2-0620 Error while disconnecting
Cause: An error occurred while AUTOTRACE attempted to disconnect from the
database instance.

Action: Check that the database is still available.

SP2-0621 Error ORA -error_number while gathering statistics
Cause: No data was found in the PLAN_TABLE while gathering statistics using
AUTOTRACE.

Action: Refer to the Oracle Database Error Messages for the specified ORA error
message.

SP2-0622 Starting line number must be less than ending line number
Cause: The starting line number specified is larger than the ending number.

Action: Re-enter the starting line number with a smaller line number.

SP2-0623 Error accessing PRODUCT_USER_PROFILE. Warning: Product user
profile information not loaded! You may need to run PUPBLD.SQL as SYSTEM
Cause: The PRODUCT_USER_PROFILE table has not been built in the SYSTEM
account.

Chapter 14
SQL*Plus Error Messages

14-19

Action: The exact format of the file extension and location of the file are system
dependent. See the SQL*Plus installation guide provided for your operating system.
The script must be run as user SYSTEM.

SP2-0625 Error printing variable variable_name
Cause: Error encountered while printing the specified variable.

Action: Check that the specified variable is correct and try again.

SP2-0626 Error accessing package DBMS_APPLICATION_INFO You may need
to install the Oracle Procedural option SET APPINFO requires Oracle Server
Release 7.2 or later
Cause: This message is followed by a successful login to the Oracle Server. The
DBMS_APPLICATION package is used to maintain on-line information about a
particular application logged onto Oracle. SET APPINFO could not be initialized.

Action: This package is created during the running of the CATPROC.SQL and should
be available on all databases from Oracle 7.2. Check that your database is correctly
installed.

SP2-0631 String beginning string_name is too long. Maximum size is 1
characteror Maximum size is string_length characters
Cause: The string specified was too long.

Action: Reduce the size of the specified string and re-try the operation.

SP2-0640 Not connected.
Cause: The PASSWORD command was issued when there was no connection to the
Oracle instance.

Action: Connect to the Oracle database before re-issuing the PASSWORD command.

SP2-0641 command_name requires connection to server
Cause: SQL*Plus was unable to execute the command because there was no
connection to a database.

Action: Connect to a database and re-try the operation.

SP2-0642 SQL*Plus internal error state error_state context error_number.
Unsafe to proceedor Unable to proceed
Cause: An internal error occurred.

Action: Make a note of the message, then contact Oracle Support Services.

SP2-0645 Operating System error occurred Unable to complete EDIT command
Cause: An operating system error occurred with the EDIT command.

Action: Check that the file was created successfully, and verify that the device you are
writing to is still available.

SP2-0650 New passwords do not match
Cause: The new passwords entered did not match.

Action: Re-issue the PASSWORD command and make sure that the new passwords
are entered correctly.

Chapter 14
SQL*Plus Error Messages

14-20

SP2-0659 Password unchanged
Cause: The PASSWORD command failed to change passwords because:

• No passwords were given.

• The new passwords did not match.

Action: Re-issue the PASSWORD command and make sure that the new passwords
are entered correctly.

SP2-0666 WARNING: SHIFTINOUT only affects shift sensitive character sets
Cause: The NLS character set used in this session does not contain shift sensitive
characters. The SET SHIFTINOUT command is unnecessary.

Action: No action required.

SP2-0667 Message file facility<lang>.msb not found
Cause: The SP1, SP2, or CPY message file could not be found. SQL*Plus cannot
run.

Action: Check the Oracle platform specific documentation to make sure SQL*Plus is
installed correctly. This may occur because the ORACLE_HOME environment
variable or registry equivalent is not set to the location of the Oracle software. Make
sure this value is set correctly. Check that the SQL*Plus binary message files exist in
the SQL*Plus message directory, for example $ORACLE_HOME/sqlplus/mesg.
Check the value of NLS_LANG environment variable or registry equivalent is correct.

SP2-0668 Invalid variable name
Cause: An invalid character was specified as part of the variable name.

Action: Specify the variable with valid characters.

SP2-0669 Valid characters are alphanumerics and '_'
Cause: An invalid character was specified as part of the variable name.

Action: Specify the variable with alphanumeric characters and '_'.

SP2-0670 Internal number conversion failed
Cause: A conversion request could not be performed because the string contained
alphanumeric characters.

Action: Make sure that the string only contains numeric digits.

SP2-0675 COPY command not available
Cause: The COPY command is not available in this version of SQL*Plus.

Action: Make a note of the message and the number, then contact Oracle Support
Services.

SP2-0676 Bind variable length cannot exceed variable_length units_of_variable
Cause: The length of the bind variable datatype was exceeded.

Action: Reduce the length of the bind variable datatype.

SP2-0678 Column or attribute type can not be displayed by SQL*Plus
Cause: The type specified is not supported.

Chapter 14
SQL*Plus Error Messages

14-21

Action: Rewrite the query to select the data with types that SQL*Plus supports.

SP2-0685 The date entered_variable is invalid or format mismatched format
Cause: An invalid date was entered or does not match the format.

Action: Enter a valid date or a date in the required format.

SP2-0686 Usage: DESCRIBE [schema.]object[@db_link]
Cause: An invalid option was used in the DESCRIBE command.

Action: Check the syntax of the DESCRIBE command for the correct options.

SP2-0692 Usage: CONN[ECT] [logon] [AS {SYSDBA|SYSOPER}] Where
<logon> ::= <username>[/<password>][@<connect_string>] | /
Cause: An invalid option was entered for the SQL*Plus CONNECT command.

Action: Check the syntax for the CONNECT command for the correct usage.

SP2-0714 Invalid combination of STARTUP options
Cause: The specified options of the STARTUP command cannot be used
simultaneously.

Action: Check the syntax of the STARTUP command for the correct usage.

SP2-0715 Invalid combination of SHUTDOWN options
Cause: The specified options of the SHUTDOWN command cannot be used
simultaneously.

Action: Check the syntax of the SHUTDOWN command for the correct usage.

SP2-0716 Invalid combination of ARCHIVE LOG options
Cause: The specified options of the ARCHIVE LOG command cannot be used
simultaneously.

Action: Check the syntax of the ARCHIVE LOG command for the correct usage.

SP2-0717 Illegal SHUTDOWN option
Cause: An invalid option was used in the SHUTDOWN command.

Action: Check the syntax of the SHUTDOWN command for the correct options.

SP2-0718 Illegal ARCHIVE LOG option
Cause: An invalid option was used in the ARCHIVE LOG command.

Action: Check the syntax of the ARCHIVE LOG command for the correct options.

SP2-0728 Specify log: {<RET>=suggested | filename | AUTO | CANCEL}
Cause: This is a RECOVER DATABASE command prompt, prompting for the redo log
files to be applied.

Action: Enter one of the redo log file options.

SP2-0729 Cannot SET INSTANCE while connected to a database
Cause: There was a problem with the connection instance while issuing the SET
INSTANCE command.

Action: Disconnect from the instance before re-issuing the command.

Chapter 14
SQL*Plus Error Messages

14-22

SP2-0733 Invalid connect string
Cause: An invalid connect string was specified.

Action: Check that the connect string is correct.

SP2-0734 Unknown command beginning command_name ... - rest of line
ignored
Cause: The command entered was invalid.

Action: Check the syntax of the command you used for the correct options.

SP2-0735 Unknown command_name option beginning option_name
Cause: An invalid option was specified for a given command.

Action: Check the syntax of the command you used for the correct options.

SP2-0736 Command line overflow while substituting into line beginning
string_name
Cause: The maximum length of the command line was exceeded.

Action: Reduce the length of the data in the substitution variables used in the
command.

SP2-0737 Usage: SET DESCRIBE [DEPTH {1|n|ALL}] [LINENUM {ON|OFF}]
[INDENT {ON|OFF}]
Cause: An invalid option was used in the SET DESCRIBE command.

Action: Check the syntax of the SET DESCRIBE command for the correct options.

SP2-0738 Restricted command command_name not available
Cause: For security reasons, the command was restricted by the -RESTRICT
command-line option.

Action: Ask your Database Administrator why SQL*Plus should be run with a -
RESTRICT option.

SP2-0745 Usage: SET SQLPLUSCOMPAT[IBILITY] version.release.[update]
Cause: An invalid option was used in the SET SQLPLUSCOMPAT[IBLITY] command.

Action: Check the syntax of the SET SQLPLUSCOMPATIBLITY command for the
correct options.

SP2-0746 command_option option out of range (lower through upper)
Cause: The specified value was not in the range.

Action: Specify a value in the range.

SP2-0747 PAGESIZE must be at least max_page_size to run this query with
LINESIZE line_size
Cause: The PAGESIZE setting was too small to display the specified LINESIZE.

Action: Increase the PAGESIZE to at least match the specified LINESIZE.

SP2-0749 Cannot resolve circular path of synonym synonym_name
Cause: An attempt was made to use a synonym to point to an object that no longer
exists where the synonym had the same name as the base object, or an attempt was
made to use a synonym that has a circular path that points back to itself.

Chapter 14
SQL*Plus Error Messages

14-23

Action: Make sure that the last synonym in the synonym path points to an object that
exists, and that it doesn't point back to itself.

SP2-0750 ORACLE_HOME may not be set
Cause: SQL*Plus was unable to find a message file during program initialization, and
could not display error messages or text required for normal operation. The most
common cause is that ORACLE_HOME has not been set. Other possible causes are
a corrupt or unreadable message file. On Windows the SQLPLUS registry entry may
be invalid.
This message is hard coded (in English) in the SQL*Plus source code so it can be
displayed on message file error. It could never be read from this message file
because the error occurs only when the message files cannot be opened. This entry
in the message file is for documentation purposes only.

Action: Make sure that all environment variables or registry entries needed to run
SQL*Plus are set. The variables are platform specific but may include
ORACLE_HOME, ORACLE_SID, NLS_LANG, and LD_LIBRARY_PATH.
On Windows if the environment variable called SQLPLUS is set, it must contain the
directory name of the SQL*Plus message files, for example ORACLE_HOME\sqlplus
\mesg.
Also check that the file sp1XX.msb is in the $ORACLE_HOME/sqlplus/mesg or
ORACLE_HOME\sqlplus\mesg directory. The "XX" stands for the country prefix
associated with your NLS_LANG environment variable. SQL*Plus reads only one of
the sp1XX.msb files. For example sp1ja.msb is read if NLS_LANG is
JAPANESE_JAPAN.JA16EUC. If NLS_LANG is not set, then the default (English
language) sp1us.msb is used. Check that the appropriate file is of non-zero size and
that the file permissions allow it to be read. Note that ".msb" files are binary. The
contents may be meaningless when viewed or printed. If you are unsure which
language file is being used, unset NLS_LANG and run SQL*Plus to verify it can read
the sp1us.msb file.

SP2-0751 Unable to connect to Oracle. Exiting SQL*Plus
Cause: No connection to an Oracle server could be made.

Action: Normally occurs after other errors showing that the database is not running, or
that the username and password were invalid.

SP2-0752 Usage: -C[OMPATIBILITY] version.release.[update]
Cause: An invalid option was used in the -C[OMPATIBILITY] command option.

Action: Check the syntax of the SQL*Plus executable for the correct options.

SP2-0753 STARTUP with MIGRATE only valid with Oracle 9.2 or greater
Cause: STARTUP MIGRATE was used to try to startup an Oracle server for a release
prior to 9.2.

Action: Check the platform specific environment to verify that you are connecting to an
Oracle server that is at least release 9.2.

SP2-0754 FROM clause cannot contain AS SYSDBA or AS SYSOPER
Cause: The COPY command does not support AS SYSDBA or AS SYSOPER
connections.

Action: Remove AS SYSDBA or AS SYSOPER from the FROM clause.

Chapter 14
SQL*Plus Error Messages

14-24

SP2-0755 TO clause cannot contain AS SYSDBA or AS SYSOPER
Cause: The COPY command does not support AS SYSDBA or AS SYSOPER
connections.

Action: Remove AS SYSDBA or AS SYSOPER from the TO clause.

SP2-0756 FROM clause length clause_len bytes exceeds maximum length
max_len
Cause: The FROM clause is too long.

Action: Reduce the string specified in the FROM clause.

SP2-0757 TO clause length clause_len bytes exceeds maximum length max_len
Cause: The TO clause is too long.

Action: Reduce the string specified in the TO clause.

SP2-0758 FROM clause missing username or connection identifier
Cause: The COPY command FROM clause must include a username and a
connection identifier.

Action: Specify a username and a connection identifier in the FROM clause.

SP2-0759 TO clause missing username or connection identifier
Cause: The COPY command TO clause must include a username and a connection
identifier.

Action: Specify a username and a connection identifier in the TO clause.

SP2-0762 Mismatched quotes in SHOW ERRORS [object]
Cause: Invalid syntax was found in the object name submitted as an argument to
SHOW ERRORS.

Action: If quotes are used, check that they are correctly matched. Either quote the
whole argument, or quote the schema and object components separately.

SP2-0768 Illegal SPOOL command
Cause: An invalid option was used in the SPOOL command.

Action: Check the syntax of the SPOOL command for the correct options.

SP2-0769 Usage: SPOOL { <file> | OFF | OUT }
where <file> is file_name[.ext] [CRE[ATE]|REP[LACE]|APP[END]]

Cause: Incorrect syntax for the SPOOL command was entered.

Action: Check the syntax of the SPOOL command for the correct usage.

SP2-0771 File filename already exists. Use another name or "SPOOL
filename[.ext] REPLACE"
Cause: The file specified in the SPOOL command already exists.

Action: Use the REPLACE option to overwrite the existing file, or specify another file
name.

SP2-0772 Automatic Storage Manager instance started
Cause: Document: Feedback message

Chapter 14
SQL*Plus Error Messages

14-25

Action:

SP2-0773 Automatic Storage Manager diskgroups mounted
Cause: Document: Feedback message

Action:

SP2-0774 Automatic Storage Manager instance shutdown
Cause: Document: Feedback message

Action:

SP2-0775 Automatic Storage Manager diskgroups dismounted
Cause: Document: Feedback message

Action:

SP2-0776 Invalid schema and object separator in SHOW ERRORS [object]
Cause: Invalid syntax was found in the object name submitted as an argument to
SHOW ERRORS.

Action: If a schema is specified, check that the schema and object names are
separated by a period.

SP2-0777 Invalid single quotes in SHOW ERRORS [object]
Cause: Invalid syntax was found in the object name submitted as an argument to
SHOW ERRORS.

Action: If the SHOW ERRORs argument is quoted, check that only double quotes are
used. Either quote the whole argument, or quote the schema and object components
separately.

SP2-0778 Script filename and arguments too long
Cause: The combined length of the script filename and script arguments is too long
for SQL*Plus.

Action: Reduce the length of the script name and path. Reduce the number and/or
size of the script arguments.

SP2-0780 Value entered is not a valid datatype
Cause: The value entered in the ACCEPT command was not valid for the specified
datatype.

Action: Enter a valid number within a valid range for the datatype.

SP2-0781 command option option_name out of range (min through max)
Cause: Attempted to enter a value outside the allowed range for the command option.

Action: Check the limits for the command option and enter a value within the allowed
range.

SP2-0782 Prelim connection established
Cause: Document: Feedback message

Action:

Chapter 14
SQL*Plus Error Messages

14-26

SP2-0783 Cannot SET variable while connected to a database
Cause: Attempted to set a system variable that cannot be set while still connected to
a database instance.

Action: Disconnect from the database instance before attempting to set the system
variable.

SP2-0784 Invalid or incomplete character beginning byte returned
Cause: Attempted to return a string from the database that contained an invalid or
incomplete character.

Action: Replace the invalid or incomplete string in the database with a valid or
complete string.

SP2-0804 Procedure created with compilation warnings
Cause: The PL/SQL procedure has been created, but has one or more warnings,
informational messages or performance messages that may help you to improve your
PL/SQL procedure.

Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and
messages.

SP2-0805 Procedure altered with compilation warnings
Cause: The PL/SQL procedure has been altered, but has one or more warnings,
informational messages or performance messages that may help you to improve your
PL/SQL procedure.

Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and
messages.

SP2-0806 Function created with compilation warnings
Cause: The PL/SQL function has been created, but has one or more warnings,
informational messages or performance messages that may help you to improve your
PL/SQL function.

Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and
messages.

SP2-0807 Function altered with compilation warnings
Cause: The PL/SQL function has been altered, but has one or more warnings,
informational messages or performance messages that may help you to improve your
PL/SQL function.

Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and
messages.

SP2-0808 Package created with compilation warnings
Cause: The PL/SQL package has been created, but has one or more warnings,
informational messages or performance messages that may help you to improve your
PL/SQL package.

Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and
messages.

Chapter 14
SQL*Plus Error Messages

14-27

SP2-0809 Package altered with compilation warnings
Cause: The PL/SQL package has been altered, but has one or more warnings,
informational messages or performance messages that may help you to improve your
PL/SQL package.

Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and
messages.

SP2-0810 Package Body created with compilation warnings
Cause: The PL/SQL package body has been created, but has one or more warnings,
informational messages or performance messages that may help you to improve your
PL/SQL package body.

Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and
messages.

SP2-0811 Package Body altered with compilation warnings
Cause: The PL/SQL package body has been altered, but has one or more warnings,
informational messages or performance messages that may help you to improve your
PL/SQL package body.

Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and
messages.

SP2-0812 View created with compilation warnings
Cause: The PL/SQL view has been created, but has one or more warnings,
informational messages or performance messages that may help you to improve your
PL/SQL view.

Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and
messages.

SP2-0813 View altered with compilation warnings
Cause: The PL/SQL view has been altered, but has one or more warnings,
informational messages or performance messages that may help you to improve your
PL/SQL view.

Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and
messages.

SP2-0814 Trigger created with compilation warnings
Cause: The PL/SQL trigger has been created, but has one or more warnings,
informational messages or performance messages that may help you to improve your
PL/SQL trigger.

Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and
messages.

SP2-0815 Trigger altered with compilation warnings
Cause: The PL/SQL trigger has been altered, but has one or more warnings,
informational messages or performance messages that may help you to improve your
PL/SQL trigger.

Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and
messages.

Chapter 14
SQL*Plus Error Messages

14-28

SP2-0816 Type created with compilation warnings
Cause: The PL/SQL type has been created, but has one or more warnings,
informational messages or performance messages that may help you to improve your
PL/SQL type.

Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and
messages.

SP2-0817 Type altered with compilation warnings
Cause: The PL/SQL type has been altered, but has one or more warnings,
informational messages or performance messages that may help you to improve your
PL/SQL type.

Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and
messages.

SP2-0818 Type Body created with compilation warnings
Cause: The PL/SQL type body has been created, but has one or more warnings,
informational messages or performance messages that may help you to improve your
PL/SQL type body.

Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and
messages.

SP2-0819 Type Body altered with compilation warnings
Cause: The PL/SQL type body has been altered, but has one or more warnings,
informational messages or performance messages that may help you to improve your
PL/SQL type body.

Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and
messages.

SP2-0820 Library created with compilation warnings
Cause: The PL/SQL library has been created, but has one or more warnings,
informational messages or performance messages that may help you to improve your
PL/SQL library.

Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and
messages.

SP2-0821 Library altered with compilation warnings
Cause: The PL/SQL library has been altered, but has one or more warnings,
informational messages or performance messages that may help you to improve your
PL/SQL library.

Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and
messages.

SP2-0822 Java created with compilation warnings
Cause: The PL/SQL java has been created, but has one or more warnings,
informational messages or performance messages that may help you to improve your
PL/SQL java.

Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and
messages.

Chapter 14
SQL*Plus Error Messages

14-29

SP2-0823 Java altered with compilation warnings
Cause: The PL/SQL java has been altered, but has one or more warnings,
informational messages or performance messages that may help you to improve your
PL/SQL java.

Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and
messages.

SP2-0824 PL/SQL compilation warnings
Cause: The PL/SQL block has been created, but has one or more warnings,
informational messages or performance messages that may help you to improve your
PL/SQL block.

Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and
messages.

SP2-0825 Dimension created with compilation warnings
Cause: The PL/SQL dimension has been created, but has one or more warnings,
informational messages or performance messages that may help you to improve your
PL/SQL dimension.

Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and
messages.

SP2-0826 Dimension altered with compilation warnings
Cause: The PL/SQL dimension has been altered, but has one or more warnings,
informational messages or performance messages that may help you to improve your
PL/SQL dimension.

Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and
messages.

SP2-0827 Procedure created with compilation errors
Cause: The PL/SQL procedure has been created, but has one or more error
messages.

Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and
messages.

SP2-0828 Procedure altered with compilation errors
Cause: The PL/SQL procedure has been altered, but has one or more error
messages.

Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and
messages.

SP2-0829 Function created with compilation errors
Cause: The PL/SQL function has been created, but has one or more error messages.

Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and
messages.

SP2-0830 Function altered with compilation errors
Cause: The PL/SQL function has been altered, but has one or more error messages.

Chapter 14
SQL*Plus Error Messages

14-30

Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and
messages.

SP2-0831 Package created with compilation errors
Cause: The PL/SQL package has been created, but has one or more error messages.

Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and
messages.

SP2-0832 Package altered with compilation errors
Cause: The PL/SQL package has been altered, but has one or more error messages.

Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and
messages.

SP2-0833 Package Body created with compilation errors
Cause: The PL/SQL package body has been created, but has one or more error
messages.

Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and
messages.

SP2-0834 Package Body altered with compilation errors
Cause: The PL/SQL package body has been altered, but has one or more error
messages.

Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and
messages.

SP2-0835 View created with compilation errors
Cause: The PL/SQL view has been created, but has one or more error messages.

Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and
messages.

SP2-0836 View altered with compilation errors
Cause: The PL/SQL view has been altered, but has one or more error messages.

Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and
messages.

SP2-0837 Trigger created with compilation errors
Cause: The PL/SQL trigger has been created, but has one or more error messages.

Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and
messages.

SP2-0838 Trigger altered with compilation errors
Cause: The PL/SQL trigger has been altered, but has one or more error messages.

Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and
messages.

SP2-0839 Type created with compilation errors
Cause: The PL/SQL type has been created, but has one or more error messages.

Chapter 14
SQL*Plus Error Messages

14-31

Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and
messages.

SP2-0840 Type altered with compilation errors
Cause: The PL/SQL type has been altered, but has one or more error messages.

Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and
messages.

SP2-0841 Type Body created with compilation errors
Cause: The PL/SQL type body has been created, but has one or more error
messages.

Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and
messages.

SP2-0842 Type Body altered with compilation errors
Cause: The PL/SQL type body has been altered, but has one or more error
messages.

Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and
messages.

SP2-0843 Library created with compilation errors
Cause: The PL/SQL library has been created, but has one or more error messages.

Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and
messages.

SP2-0844 Library altered with compilation errors
Cause: The PL/SQL library has been altered, but has one or more error messages.

Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and
messages.

SP2-0845 Java created with compilation error
Cause: The PL/SQL java has been created, but has one or more error messages.

Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and
messages.

SP2-0846 Java altered with compilation errors
Cause: The PL/SQL java has been altered, but has one or more error messages.

Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and
messages.

SP2-0847 PL/SQL compilation errors
Cause: The PL/SQL block has been created, but has one or more error messages.

Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and
messages.

SP2-0848 Dimension created with compilation errors
Cause: The PL/SQL dimension has been created, but has one or more error
messages.

Chapter 14
SQL*Plus Error Messages

14-32

Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and
messages.

SP2-0849 Dimension altered with compilation errors
Cause: The PL/SQL dimension has been altered, but has one or more error
messages.

Action: Use the SQL*Plus SHOW ERR[ORS] command to display the warnings and
messages.

SP2-1500 STARTUP with UPGRADE only valid with Oracle 9.2 or greater
Cause: STARTUP UPGRADE was used to try to startup an Oracle server for a
release prior to 9.2.

Action: Check the platform specific environment to verify that you are connecting to an
Oracle server that is at least release 9.2.

SP2-1501 STARTUP with DOWNGRADE only valid with Oracle 9.2 or greater
Cause: STARTUP DOWNGRADE was used to try to startup an Oracle server for a
release prior to 9.2.

Action: Check the platform specific environment to verify that you are connecting to an
Oracle server that is at least release 9.2.

SP2-1502 The HTTP proxy server specified by http_proxy is not accessible
Cause: The HTTP proxy server used by SQL*Plus cannot be accessed. SQL*Plus will
be unable to run scripts located on a web server.

Action: Check that the proxy setting has the correct value, or unset it if no proxy is
needed. SQL*Plus may get the proxy name from the environment variable http_proxy,
or the value may be set in another way on your system. Check that the given proxy
server is operational. Most web browsers can be configured to use a proxy. Configure
a browser to use the desired proxy and verify that web pages can still be loaded.

SP2-1503 Unable to initialize Oracle call interface
Cause: Indicates a library used by SQL*Plus to communicate with the database failed
to initialize correctly.

Action: Check that the Oracle environment or registry entries are consistent and
correct. If using the SQL*Plus Instant Client make sure the SQL*Plus and Oracle
libraries are from the same release. Make sure you have read access to the libraries.

SP2-1504 Cannot print uninitialized LOB variable
Cause: The specified LOB variable should be initialized before printing.

Action: Check that the specified variable is initialized and try again.

SP2-1505 Invalid COL or TAB position entered
Cause: The BTITLE, TTITLE, REPHEADER or REPFOOTER command you entered
attempts to use a COL or TAB value greater than 240, or a COL or TAB value greater
than LINESIZE if LINESIZE is greater than 240.

Action: Make sure the BTITLE, TTITLE, REPHEADER or REPFOOTER command
you enter uses a COL or TAB value of 240 or less, or uses a COL or TAB value of
LINESIZE or less if LINESIZE is greater than 240.

Chapter 14
SQL*Plus Error Messages

14-33

SP2-1507 Errorlogging table, role or privilege is missing or not accessible
Cause: Errorlogging table/role/privilege is missing or not accessible.

Action: See elgsetup.txt in the sqlplus doc directory for information about how to
create a non-default error log table. See the Oracle Database Administrator's Guide
for information about how to grant privileges.

SP2-1508 Invalid option for SET ERRORLOGGING OFF
Cause: An attempt was made to issue the SET ERRORLOGGING OFF command
with additional options. SET ERRORLOGGING OFF accepts no other options.

Action: Reenter the SET ERRORLOGGING OFF command without any other options.

SP2-1509 Invalid option for SET ERRORLOGGING ON
Cause: An attempt was made to enter an invalid option for SET ERRORLOGGING
ON.

Action: Reenter the SET ERRORLOGGING ON command with valid options. Valid
options are: TABLE, IDENTIFIER, and TRUNCATE.

SP2-1510 Invalid option option_name for SET ERRORLOGGING ON
Cause: An attempt was made to enter an invalid option for SET ERRORLOGGING
ON.

Action: Reenter the SET ERRORLOGGING ON command with valid options. Valid
options are: TABLE, IDENTIFIER, and TRUNCATE.

SP2-1511 Missing table name for SET ERRORLOGGING ON TABLE
Cause: Either no table name was entered, or an invalid table or schema name was
entered with the SET ERRORLOGGING ON TABLE command. The table name is
assumed to be in the current schema unless another schema is specified with the
syntax schema.table.

Action: Reenter the SET ERRORLOGGING ON TABLE command with a valid table
name.

SP2-1512 Unable to set table_name as table name for SET ERRORLOGGING ON
TABLE
Cause: Either no table name was entered, or an invalid table or schema name was
entered with the SET ERRORLOGGING ON TABLE command. The table name is
assumed to be in the current schema unless another schema is specified with the
syntax schema.table.

Action: Reenter the SET ERRORLOGGING ON TABLE command with a valid table
name.

SP2-1513 Invalid file name file_name for SET ERRORLOGGING ON FILE
Cause: Either no file name was entered, or an invalid file name or path was entered
with the SET ERRORLOGGING ON FILE command.

Action: Reenter the SET ERRORLOGGING ON FILE command with a valid file name
and path.

Chapter 14
SQL*Plus Error Messages

14-34

SP2-1514 Invalid identifier identifier for SET ERRORLOGGING ON IDENTIFIER
Cause: Either no identifier string was entered, or an invalid identifier string was
entered with the SET ERRORLOGGING ON IDENTIFIER command. The identifier
string cannot contain special characters.

Action: Reenter the SET ERRORLOGGING ON IDENTIFIER command with a valid
identifier string.

SP2-1515 Invalid identifier identifier for SET ERRORLOGGING ON IDENTIFIER
Cause: Either no identifier string was entered, or an invalid identifier string was
entered with the SET ERRORLOGGING ON IDENTIFIER command. The identifier
string cannot contain special characters.

Action: Reenter the SET ERRORLOGGING ON IDENTIFIER command with a valid
identifier string.

SP2-1516 Unmatched quotes in identifier identifier for SET ERRORLOGGING
ON IDENTIFIER
Cause: An invalid string was found in the SET ERRORLOGGING ON IDENTIFIER
command. The identifier string must be contained in single or double quotes.

Action: Check string quotes in the identifier before reentering the SET
ERRORLOGGING ON IDENTIFIER command.

SP2-1517 Unable to flush the error log table schema.table
Cause: User may have insufficient privileges to flush the error log table.

Action: Check the privileges granted to access the error log table. See the Oracle
Database Administrator's Guide for information about how to grant privileges.

SP2-1518 Errorlogging table table_name does not exist in schema
schema_name
Cause: Attempted to write to a non-existent error log table.

Action: See elgsetup.txt in the sqlplus doc directory for information about how to
create a non-default error log table.

SP2-1519 Unable to write to the error log table schema.table
Cause: User may have insufficient privileges to write to the error log table.

Action: Check the privileges granted to access the error log table. See the Oracle
Database Administrator's Guide for information about how to grant privileges.

SP2-01538 Edition only valid when connected to Oracle Database
Cause: Attempted to connect to an Edition session when database unavailable.

Action: Ensure database is available before attempting to connect to an Edition
session.

SP2-01539 Edition requires Oracle Database 11g or later
Cause: Attempted to connect to an Edition session on Oracle Database earlier than
11g.

Action: Edition is only valid with Oracle Database 11g or later.

Chapter 14
SQL*Plus Error Messages

14-35

14.2 COPY Command Messages
CPY-0002 Illegal or missing APPEND, CREATE, INSERT, or REPLACE option
Cause: An internal COPY function has invoked COPY with a create option (flag) value
that is out of range.

Action: Please contact Oracle Worldwide Customer Support Services.

CPY-0003 Internal Error: logical host number out of range
Cause: An internal COPY function has been invoked with a logical host number value
that is out of range.

Action: Please contact Oracle Worldwide Customer Support Services.

CPY-0004 Source and destination table and column names don't match
Cause: On an APPEND operation or an INSERT (when the table exists), at least one
column name in the destination table does not match the corresponding column name
in the optional column name list or in the SELECT command.

Action: Re-specify the COPY command, making sure that the column names and their
respective order in the destination table match the column names and column order in
the optional column list or in the SELECT command

CPY-0005 Source and destination column attributes don't match
Cause: On an APPEND operation or an INSERT (when the table exists), at least one
column in the destination table does not have the same datatype as the
corresponding column in the SELECT command.

Action: Re-specify the COPY command, making sure that the data types for items
being selected agree with the destination. Use TO_DATE, TO_CHAR, and
TO_NUMBER to make conversions.

CPY-0006 Select list has more columns than destination table
Cause: On an APPEND operation or an INSERT (when the table exists), the number
of columns in the SELECT command is greater than the number of columns in the
destination table.

Action: Re-specify the COPY command, making sure that the number of columns
being selected agrees with the number in the destination table.

CPY-0007 Select list has fewer columns than destination table
Cause: On an APPEND operation or INSERT (when the table exists), the number of
columns in the SELECT command is less than the number of columns in the
destination table.

Action: Re-specify the COPY command, making sure that the number of columns
being selected agrees with the number in the destination table.

CPY-0008 More column list names than columns in the destination table
Cause: On an APPEND operation or an INSERT (when the table exists), the number
of columns in the column name list is greater than the number of columns in the
destination table.

Chapter 14
COPY Command Messages

14-36

Action: Re-specify the COPY command, making sure that the number of columns in
the column list agrees with the number in the destination table.

CPY-0009 Fewer column list names than columns in the destination table
Cause: On an APPEND operation or an INSERT (when the table exists), the number
of columns in the column name list is less than the number of columns in the
destination table.

Action: Re-specify the COPY command, making sure that the number of columns in
the column list agrees with the number in the destination table.

CPY-0012 Datatype cannot be copied
Cause: An attempt was made to copy a datatype that is not supported in the COPY
command. Datatypes supported by the COPY command are CHAR, DATE, LONG,
NUMBER and VARCHAR2.

Re-specify the COPY command, making sure that the unsupported datatype column
is removed. For more information, see the SQL*Plus COPY Command.

Chapter 14
COPY Command Messages

14-37

Part IV
SQL*Plus Appendixes

Part IV contains the following SQL*Plus appendixes:

• SQL*Plus Limits

• SQL*Plus COPY Command

• Obsolete SQL*Plus Commands

• SQL*Plus Instant Client

A
SQL*Plus Limits

The general SQL*Plus limits shown are valid for most operating systems.

Table A-1 SQL*Plus Limits

Item Limit

filename length system dependent

username length 128 bytes

substitution variable name
length

128 bytes

substitution variable value
length

240 characters

command-line length 5000 characters

LONG 2,000,000,000 bytes

LINESIZE system dependent

LONGCHUNKSIZE value system dependent

output line size system dependent

SQL or PL/SQL command-
line size after variable
substitution

3,000 characters (internal only)

number of characters in a
COMPUTE command label

500 characters

number of lines per SQL
command

500 (assuming 80 characters per line)

maximum PAGESIZE 50,000 lines

total row width 32,767 characters

maximum ARRAYSIZE 5000 rows

maximum number of nested
scripts

20

maximum page number 99,999

maximum PL/SQL error
message size

2K

maximum ACCEPT
character string length

240 Bytes

maximum number of
substitution variables

2048

A-1

B
SQL*Plus COPY Command

This appendix discusses the following topics:

• COPY Command Syntax

• Copying Data from One Database to Another

• About Copying Data between Tables on One Database

Read this chapter while sitting at your computer and try out the example shown.
Before beginning, make sure you have access to the sample tables described in
SQL*Plus Quick Start .

The COPY command will be deprecated in future releases of SQL*Plus. After Oracle
9i, no new datatypes are supported by COPY.

B.1 COPY Command Syntax
COPY {FROM database | TO database | FROM database TO database} {APPEND|
CREATE|INSERT|REPLACE} destination_table [(column, column, column, ...)] USING query

where database has the following syntax:

username[/password]@connect_identifier

Copies data from a query to a table in the same or another database. COPY supports
the following datatypes:

CHAR
DATE
LONG
NUMBER
VARCHAR2

WARNING:

Including your password in plain text is a security risk. You can avoid this risk
by omitting the password, and entering it only when the system prompts for
it.

B.1.1 Terms
See the following list for a description of each term or clause:

FROM database

The database that contains the data to be copied. If you omit the FROM clause, the
source defaults to the database to which SQL*Plus is connected (that is, the database

B-1

that other commands address). You must use a FROM clause to specify a source
database other than the default. The COPY command FROM clause does not support
SYSDBA or SYSOPER privileged connections.

TO database

The database containing the destination table. If you omit the TO clause, the
destination defaults to the database to which SQL*Plus is connected (that is, the
database that other commands address). You must use a TO clause to specify a
destination database other than the default. The COPY command TO clause does not
support SYSDBA or SYSOPER privileged connections.

database

Specifies username[/password] @connect_identifier of the Oracle Database source or
destination database you wish to COPY FROM or COPY TO. The COPY command
does not support SYSDBA or SYSOPER privileged connections. You must include a
username. SQL*Plus prompts you for the password associated with the username
specified in the COPY FROM or COPY TO clauses. SQL*Plus suppresses the display
of your password response.

You must include the connect_identifier clause to specify the source or destination
database. The exact syntax depends on the Oracle Net configuration. For more
information, refer to the Oracle Net manual or contact your DBA.

APPEND

Inserts the rows from query into destination_table if the table exists. If
destination_table does not exist, COPY creates it.

CREATE

Inserts the rows from query into destination_table after first creating the table. If
destination_table already exists, COPY returns an error.

INSERT

Inserts the rows from query into destination_table. If destination_table does not exist,
COPY returns an error. When using INSERT, the USING query must select one
column for each column in destination_table.

REPLACE

Replaces destination_table and its contents with the rows from query. If
destination_table does not exist, COPY creates it. Otherwise, COPY drops the existing
table and replaces it with a table containing the copied data.

destination_table

Represents the table you wish to create or to which you wish to add data.

(column, column, column, ...)

Specifies the names of the columns in destination_table. You must enclose a name in
double quotes if it contains lowercase letters or blanks.

If you specify columns, the number of columns must equal the number of columns
selected by the query. If you do not specify any columns, the copied columns will have
the same names in the destination table as they had in the source if COPY creates
destination_table.

Appendix B
COPY Command Syntax

B-2

USING query

Specifies a SQL query (SELECT command) determining which rows and columns
COPY copies.

B.1.2 Usage
To enable the copying of data between Oracle and non-Oracle databases, NUMBER
columns are changed to DECIMAL columns in the destination table. Hence, if you are
copying between Oracle databases, a NUMBER column with no precision will be
changed to a DECIMAL(38) column. When copying between Oracle databases, you
should use SQL commands (CREATE TABLE AS and INSERT) or you should ensure
that your columns have a precision specified.

The SQL*Plus SET LONG variable limits the length of LONG columns that you copy. If
any LONG columns contain data longer than the value of LONG, COPY truncates the
data.

SQL*Plus performs a commit at the end of each successful COPY. If you set the
SQL*Plus SET COPYCOMMIT variable to a positive value n, SQL*Plus performs a
commit after copying every n batches of records. The SQL*Plus SET ARRAYSIZE
variable determines the size of a batch.

Some operating environments require that service names be placed in double quotes.

B.1.3 Examples
The following command copies the entire EMPLOYEES table to a table named
WESTEMPLOYEES. Note that the tables are located in two different databases. If
WESTEMPLOYEES already exists, SQL*Plus replaces the table and its contents. The
columns in WESTEMPLOYEES have the same names as the columns in the source
table, EMPLOYEES.

COPY FROM HR@HQ TO JOHN@WEST -
REPLACE WESTEMPLOYEES -
USING SELECT * FROM EMPLOYEES

The following command copies selected records from EMPLOYEES to the database to
which SQL*Plus is connected. SQL*Plus creates SALESMEN through the copy.
SQL*Plus copies only the columns EMPLOYEE_ID and LAST_NAME, and at the
destination names them EMPLOYEE_ID and SA_MAN.

COPY FROM HR@ORACLE01 -
CREATE SALESMEN (EMPLOYEE_ID, SA_MAN) -
USING SELECT EMPLOYEE_ID, LAST_NAME FROM EMPLOYEES -
WHERE JOB_ID='SA_MAN';

B.2 Copying Data from One Database to Another
Use the SQL*Plus COPY command to copy CHAR, DATE, LONG, NUMBER or
VARCHAR2 data between databases and between tables on the same database. With
the COPY command, you can copy data between databases in the following ways:

• Copy data from a remote database to your local database.

• Copy data from your local (default) database to a remote database (most
systems).

Appendix B
Copying Data from One Database to Another

B-3

• Copy data from one remote database to another remote database (most systems).

Note:

In general, the COPY command was designed to be used for copying
data between Oracle and non-Oracle databases. You should use SQL
commands (CREATE TABLE AS and INSERT) to copy data between
Oracle databases.

B.2.1 Understanding COPY Command Syntax
You enter the COPY command in the following form:

COPY FROM database TO database action -
destination_table (column_name, column_name, -
column_name ...) USING query

Here is a sample COPY command:

COPY FROM HR@BOSTONDB -
TO TODD@CHICAGODB -
CREATE NEWDEPT (DEPARTMENT_ID, DEPARTMENT_NAME, CITY) -
USING SELECT * FROM EMP_DETAILS_VIEW

To specify a database in the FROM or TO clause, you must have a valid username
and password for the local and remote databases and know the appropriate Oracle
Net service names. COPY obeys Oracle Database security, so the username you
specify must have been granted access to tables for you to have access to tables. For
information on what databases are available to you, contact your DBA.

When you copy to your local database from a remote database, you can omit the TO
clause. When you copy to a remote database from your local database, you can omit
the FROM clause. When you copy between remote databases, you must include both
clauses. However, including both clauses increases the readability of your scripts.

The COPY command behaves differently based on whether the destination table
already exists and on the action clause you enter (CREATE in the example). See
About Controlling Treatment of the Destination Table for more information.

By default, the copied columns have the same names in the destination table that they
have in the source table. If you want to give new names to the columns in the
destination table, enter the new names in parentheses after the destination table
name. If you enter any column names, you must enter a name for every column you
are copying.

Appendix B
Copying Data from One Database to Another

B-4

Note:

To enable the copying of data between Oracle and non-Oracle databases,
NUMBER columns are changed to DECIMAL columns in the destination
table. Hence, if you are copying between Oracle databases, a NUMBER
column with no precision will be changed to a DECIMAL(38) column. When
copying between Oracle databases, you should use SQL commands
(CREATE TABLE AS and INSERT) or you should ensure that your columns
have a precision specified.

The USING clause specifies a query that names the source table and specifies the
data that COPY copies to the destination table. You can use any form of the SQL
SELECT command to select the data that the COPY command copies.

Here is an example of a COPY command that copies only two columns from the
source table, and copies only those rows in which the value of DEPARTMENT_ID is
30:

COPY FROM HR@BOSTONDB -
REPLACE EMPCOPY2 -
USING SELECT LAST_NAME, SALARY -
FROM EMP_DETAILS_VIEW -
WHERE DEPARTMENT_ID = 30

You may find it easier to enter and edit long COPY commands in scripts rather than
trying to enter them directly at the command prompt.

B.2.2 About Controlling Treatment of the Destination Table
You control the treatment of the destination table by entering one of four control
clauses—REPLACE, CREATE, INSERT, or APPEND.

The REPLACE clause names the table to be created in the destination database and
specifies the following actions:

• If the destination table already exists, COPY drops the existing table and replaces
it with a table containing the copied data.

• If the destination table does not already exist, COPY creates it using the copied
data.

You can use the CREATE clause to avoid accidentally writing over an existing table.
CREATE specifies the following actions:

• If the destination table already exists, COPY reports an error and stops.

• If the destination table does not already exist, COPY creates the table using the
copied data.

Use INSERT to insert data into an existing table. INSERT specifies the following
actions:

• If the destination table already exists, COPY inserts the copied data in the
destination table.

• If the destination table does not already exist, COPY reports an error and stops.

Appendix B
Copying Data from One Database to Another

B-5

Use APPEND when you want to insert data in an existing table, or create a new table
if the destination table does not exist. APPEND specifies the following actions:

• If the destination table already exists, COPY inserts the copied data in the
destination table.

• If the table does not already exist, COPY creates the table and then inserts the
copied data in it.

Note:

See your DBA for an appropriate username, password, and service name for
a remote computer that contains a copy of EMPLOYEE_COPY.

COPY FROM HR@BOSTONDB -
CREATE EMPCOPY -
USING SELECT * FROM HR

Array fetch/bind size is 15. (arraysize is 15)
Will commit when done. (copycommit is 0)
Maximum long size is 80. (long is 80)

SQL*Plus then creates the table EMPLOYEE_COPY and copies the rows:

Table SALESMAN created.

 5 rows selected from HR@BOSTONDB.
 5 rows inserted into SALESMAN.
 5 rows committed into SALESMAN at DEFAULT HOST connection.

In this COPY command, the FROM clause directs COPY to connect you to the
database with the specification BOSTONDB as HR.

Notice that you do not need a semicolon at the end of the command; COPY is a
SQL*Plus command, not a SQL command, even though it contains a query. Since
most COPY commands are longer than one line, you must use a line continuation
hyphen (-), optionally preceded by a space, at the end of each line except the last.

Example B-1 Copying from a Remote Database to Your Local Database Using
CREATE

To copy HR from a remote database into a table called EMPLOYEE_COPY on your
own database, enter the following command:

B.2.3 About Interpreting the Messages that COPY Displays
The first three messages displayed by COPY show the values of SET command
variables that affect the COPY operation. The most important one is LONG, which
limits the length of a LONG column's value. (LONG is a datatype, similar to CHAR.) If
the source table contains a LONG column, COPY truncates values in that column to
the length specified by the system variable LONG.

Appendix B
Copying Data from One Database to Another

B-6

The variable ARRAYSIZE limits the number of rows that SQL*Plus fetches from the
database at one time. This number of rows makes up a batch. The variable
COPYCOMMIT sets the number of batches after which COPY commits changes to the
database. (If you set COPYCOMMIT to zero, COPY commits changes only after all
batches are copied.) For more information on SET variables, including how to change
their settings, see the SET command.

After listing the three system variables and their values, COPY tells you if a table was
dropped, created, or updated during the copy. Then COPY lists the number of rows
selected, inserted, and committed.

B.2.4 Specifying Another User's Table
You can refer to another user's table in a COPY command by qualifying the table
name with the username, just as you would in your local database, or in a query with a
database link.

For example, to make a local copy of a table named DEPARTMENT owned by the
username ADAMS on the database associated with the Oracle Net connect identifier
BOSTONDB, you would enter

COPY FROM HR@BOSTONDB -
CREATE EMPLOYEE_COPY2 -
USING SELECT * FROM ADAMS.DEPARTMENT

Of course, you could get the same result by instructing COPY to log in to the remote
database as ADAMS. You cannot do that, however, unless you know the password
associated with the username ADAMS.

B.3 About Copying Data between Tables on One Database
You can copy data from one table to another in a single database (local or remote). To
copy between tables in your local database, specify your own username and the
service name for your local database in either a FROM or a TO clause (omit the other
clause):

COPY FROM HR@MYDATABASE -
INSERT EMPLOYEE_COPY2 -
USING SELECT * FROM EMPLOYEE_COPY

To copy between tables on a remote database, include the same username and
service name in the FROM and TO clauses:

COPY FROM HR@BOSTONDB -
TO HR@BOSTONDB -
INSERT EMPLOYEE_COPY2 -
USING SELECT * FROM EMPLOYEE_COPY

Appendix B
About Copying Data between Tables on One Database

B-7

C
Obsolete SQL*Plus Commands

This appendix covers earlier versions of some SQL*Plus commands. While these
older commands still function in SQL*Plus, they are not supported. It is recommended
that you use the alternative SQL*Plus commands listed in the following table.

C.1 SQL*Plus Obsolete Command Alternatives
Obsolete commands are available in current releases of SQL*Plus. In future releases,
they may only be available by setting the SQLPLUSCOMPATIBILITY variable. You
should modify scripts using obsolete commands to use the alternative commands.

Obsolete
Command

Alternative Command Description of Alternative Command

BTITLE (old form) BTITLE Places and formats a title at the bottom
of each report page or lists the current
BTITLE definition.

COLUMN DEFAULT COLUMN CLEAR Resets column display attributes to
default values.

DOCUMENT REMARK Places a comment which SQL*Plus
does not interpret as a command.

NEWPAGE SET NEWP[AGE] {1 | n | NONE} Sets the number of blank lines to be
printed from the top of each page to the
top title.

SET BUFFER EDIT Enables the editing of the SQL*Plus
command buffer, or the contents of a
saved file. Use the SQL*Plus SAVE,
GET, @ and START commands to
create and use external files.

SET COMPATIBILITY none
Obsolete

SET CLOSECURSOR none
Obsolete

SET DOCUMENT none
Obsolete

SET MAXDATA none
Obsolete

SET SCAN SET DEF[INE] {& | c | ON | OFF} Sets the character used to prefix
substitution variables.

SET SPACE SET COLSEP { | text} Sets the text to be printed between
SELECTed columns.

SET TRUNCATE SET WRA[P] {ON | OFF} Controls whether SQL*Plus truncates a
SELECTed row if it is too long for the
current line width.

C-1

Obsolete
Command

Alternative Command Description of Alternative Command

SHOW LABEL none
Obsolete

TTITLE (old form) TTITLE Places and formats a title at the top of
each report page or lists the current
TTITLE definition.

C.2 BTITLE (old form)
Syntax

BTI[TLE] text

Displays a title at the bottom of each report page.

The old form of BTITLE offers formatting features more limited than those of the new
form, but provides compatibility with UFI (a predecessor of SQL*Plus). The old form
defines the bottom title as an empty line followed by a line with centered text. See
TTI[TLE] text (obsolete old form) for more details.

C.3 COLUMN DEFAULT
Syntax

COL[UMN] {column|expr} DEF[AULT] (obsolete)

Resets the display attributes for a given column to default values.

Has the same effect as COLUMN CLEAR.

C.4 DOCUMENT
Syntax

DOC[UMENT]

Begins a block of documentation in a script.

For information on the current method of inserting comments in a script, see the
section About Placing Comments in Scripts and the REMARK command.

After you type DOCUMENT and enter [Return], SQL*Plus displays the prompt DOC>
in place of SQL> until you end the documentation. The "pound" character (#) on a line
by itself ends the documentation.

If you have set DOCUMENT to OFF, SQL*Plus suppresses the display of the block of
documentation created by the DOCUMENT command. For more information, see SET
DOC[UMENT] {ON|OFF} (obsolete).

Appendix C
BTITLE (old form)

C-2

C.5 NEWPAGE
Syntax

NEWPAGE [1|n]

Advances spooled output n lines beyond the beginning of the next page.

See SET NEWP[AGE] {1 | n | NONE} for information on the current method for
advancing spooled output.

C.6 SET BUFFER
Syntax

SET BUF[FER] {buffer|SQL}

Makes the specified buffer the current buffer.

Initially, the SQL buffer is the current buffer. SQL*Plus does not require the use of
multiple buffers; the SQL buffer alone should meet your needs.

If the buffer name you enter does not exist, SET BUFFER defines (creates and
names) the buffer. SQL*Plus deletes the buffer and its contents when you exit
SQL*Plus.

Running a query automatically makes the SQL buffer the current buffer. To copy text
from one buffer to another, use the GET and SAVE commands. To clear text from the
current buffer, use CLEAR BUFFER. To clear text from the SQL buffer while using a
different buffer, use CLEAR SQL.

C.7 SET COMPATIBILITY
Syntax

SET COM[PATIBILITY]{V7 | V8 | NATIVE}

Specifies the version of the SQL language parsing syntax to use.

Set COMPATIBILITY to V7 for Oracle7, or to V8 for Oracle8 or later. COMPATIBILITY
always defaults to NATIVE. Set COMPATIBILITY for the version of Oracle Database
SQL syntax you want to use on the connected database, otherwise.

The default compatibility setting, NATIVE, is the most relevant setting for modern
Oracle databases.

For information about SQL*Plus version compatibility settings, see SET
SQLPLUSCOMPAT[IBILITY] {x.y[.z]}.

Example

To run a script, SALARY.SQL, created with Oracle7 SQL syntax, enter

Appendix C
NEWPAGE

C-3

SET COMPATIBILITY V7
START SALARY

After running the file, reset compatibility to NATIVE to run scripts created for Oracle
Database 10g:

SET COMPATIBILITY NATIVE

Alternatively, you can add the command SET COMPATIBILITY V7 to the beginning of
the script, and reset COMPATIBILITY to NATIVE at the end of the file.

C.8 SET CLOSECURSOR
Syntax

SET CLOSECUR[SOR] {ON|OFF}

Sets the cursor usage behavior.

On or OFF sets whether or not the cursor will close and reopen after each SQL
statement. This feature may be useful in some circumstances to release resources in
the database server.

C.9 SET DOCUMENT
Syntax

SET DOC[UMENT] {ON|OFF}

Displays or suppresses blocks of documentation created by the DOCUMENT
command.

SET DOCUMENT ON causes blocks of documentation to be echoed to the screen.
Set DOCUMENT OFF suppresses the display of blocks of documentation.

See DOC[UMENT] (obsolete) for information on the DOCUMENT command.

C.10 SET MAXDATA
Syntax

SET MAXD[ATA] n

Sets the maximum total row width that SQL*Plus can process.

In SQL*Plus, the maximum row width is now unlimited. Any values you set using SET
MAXDATA are ignored by SQL*Plus.

Appendix C
SET CLOSECURSOR

C-4

C.11 SET SCAN
Syntax

SET SCAN {ON|OFF}

Controls scanning for the presence of substitution variables and parameters. OFF
suppresses processing of substitution variables and parameters; ON enables normal
processing.

ON functions in the same manner as SET DEFINE ON.

C.12 SET SPACE
Syntax

SET SPACE {1|n}

Sets the number of spaces between columns in output. The maximum value of n is 10.

The SET SPACE 0 and SET COLSEP " commands have the same effect. This
command is obsoleted by SET COLSEP, but you can still use it for backward
compatibility. You may prefer to use COLSEP because the SHOW command
recognizes COLSEP and does not recognize SPACE.

C.13 SET TRUNCATE
Syntax

SET TRU[NCATE] {ON|OFF}

Controls whether SQL*Plus truncates or wraps a data item that is too long for the
current line width.

ON functions in the same manner as SET WRAP OFF, and vice versa. You may
prefer to use WRAP because the SHOW command recognizes WRAP and does not
recognize TRUNCATE.

C.14 TTITLE (old form)
Syntax

TTI[TLE] text

Displays a title at the top of each report page.

The old form of TTITLE offers formatting features more limited than those of the new
form, but provides compatibility with UFI (a predecessor of SQL*Plus). The old form

Appendix C
SET SCAN

C-5

defines the top title as a line with the date left-aligned and the page number right-
aligned, followed by a line with centered text and then a blank line.

The text you enter defines the title TTITLE displays.

SQL*Plus centers text based on the size of a line as determined by SET LINESIZE. A
separator character (|) begins a new line; two line separator characters in a row (||)
insert a blank line. You can change the line separator character with SET HEADSEP.

You can control the formatting of page numbers in the old forms of TTITLE and
BTITLE by defining a variable named "_page". The default value of _page is the
formatting string "page &P4". To alter the format, you can DEFINE _page with a new
formatting string as follows:

SET ESCAPE / SQL> DEFINE _page = 'Page /&P2'

This formatting string will print the word "page" with an initial capital letter and format
the page number to a width of two. You can substitute any text for "page" and any
number for the width. You must set escape so that SQL*Plus does not interpret the
ampersand (&) as a substitution variable. See SET ERRORL[OGGING] {ON | OFF}
[TABLE [schema.]tablename] [TRUNCATE] [IDENTIFIER identifier] for more
information on setting the escape character.

SQL*Plus interprets TTITLE in the old form if a valid new-form clause does not
immediately follow the command name.

If you want to use CENTER with TTITLE and put more than one word on a line, you
should use the new form of TTITLE. For more information see the TTITLE command.

Example

To use the old form of TTITLE to set a top title with a left-aligned date and right-
aligned page number on one line followed by SALES DEPARTMENT on the next line
and PERSONNEL REPORT on a third line, enter

TTITLE 'SALES DEPARTMENT|PERSONNEL REPORT'

Appendix C
TTITLE (old form)

C-6

D
SQL*Plus Instant Client

SQL*Plus Instant Client is a standalone product with all the functionality of SQL*Plus
command-line. It connects to existing remote Oracle databases, but does not include
its own database. It is easy to install and uses significantly less disk space than the full
Oracle Database Client installation required to use SQL*Plus command-line.

SQL*Plus Instant Client is available on platforms that support the OCI Instant Client.
See About OCI Instant Client for more information on the OCI Instant Client.

To install SQL*Plus Instant Client, you need two packages:

• SQL*Plus Instant Client package.

• Either the Basic OCI Instant Client package, or the lightweight OCI Instant Client
package.

D.1 About Choosing the SQL*Plus Instant Client to Install
SQL*Plus Instant Client can be installed in two ways:

• Download the packages from the Oracle Technology Network (OTN).

• Copy the same files that are in the packages from an Oracle Database 20c Client
Administrator installation.

Both the SQL*Plus and OCI packages must be from the same Oracle Database
version.

D.1.1 Basic Instant Client
SQL*Plus Instant Client using the Basic OCI package works with any NLS_LANG
setting supported by the Oracle Database. It supports all character sets and language
settings available in the Oracle Database.

D.1.2 Lightweight Instant Client
SQL*Plus Instant Client using the lightweight OCI package displays error messages in
English only and supports only specific character sets. It is significantly smaller than
SQL*Plus Instant Client using the Basic OCI package.

Valid values for NLS_LANG parameters with the lightweight Instant Client are:

• language can be any valid language supported by the Oracle Database, however,
error messages are only reported in English.

• territory can be any valid territory supported by the Oracle Database.

• charset is one of the following character sets:

– US7ASCII

– WE8DEC

D-1

– WE8MSWIN1252

– WE8ISO8859P1

– UTF8

– AL16UTF16

– AL32UTF8

For example:

NLS_LANG=AMERICAN_AMERICA.UTF8

See Setting Up a Globalization Support Environment, and NLS_LANG Environment
Variable for more information about NLS settings.

D.1.2.1 Lightweight SQL*Plus Instant Client Error with Unsupported Character
Set

Attempting to start SQL*Plus Instant Client with an unsupported character set will fail
with the following error:

Error 5 initializing SQL*Plus
NLS initialization error

D.2 About Installing SQL*Plus Instant Client by Downloading
from OTN

The OTN downloads for Linux are RPM packages. The OTN downloads for UNIX and
Windows are zip files.

The SQL*Plus Instant Client package should never be installed on an
ORACLE_HOME.

D.2.1 Installing SQL*Plus Instant Client from Linux RPM Packages
1. Download the RPM packages containing the SQL*Plus Instant Client package,

and the OCI package from the OTN Instant Client page. Both packages must be
from the same version.

2. Use rpm -i for the initial install of the RPM packages, or rpm -u to upgrade to a
newer version of the packages.

3. Configure SQL*Plus Instant Client. See About Configuring SQL*Plus Instant
Client.

D.2.2 Installing SQL*Plus Instant Client from the UNIX or Windows Zip
Files

1. Download the zip files containing the SQL*Plus Instant Client package, and the
OCI package from the OTN Instant Client page. Both packages must be from the
same version.

Appendix D
About Installing SQL*Plus Instant Client by Downloading from OTN

D-2

https://www.oracle.com/technetwork/database/database-technologies/instant-client/overview/index.html
https://www.oracle.com/technetwork/database/database-technologies/instant-client/overview/index.html

2. Create a new directory, for example, /home/instantclient20_2 on UNIX or c:
\instantclient20_2 on Windows.

3. Unzip the two packages into the new directory.

4. Configure SQL*Plus Instant Client. See About Configuring SQL*Plus Instant
Client.

D.2.3 List of Files Required for SQL*Plus Instant Client
Tables E-1, E-2 and E-3 list the required files from each of the SQL*Plus and OCI
packages. The files from only one of the OCI packages are required. Other files
installed that are not listed here can be ignored, or can be removed to save disk
space.

Table D-1 Instant Client Files in the SQL*Plus Package

Linux and UNIX Windows Description

sqlplus sqlplus.exe SQL*Plus executable

libsqlplus.so not applicable SQL*Plus library

libsqlplusic.so orasqlplusic20.dll SQL*Plus data shared library

Table D-2 Instant Client Files in the Basic OCI Package

Linux and UNIX Windows Description

libclntsh.so.20.1 oci.dll Client code library

libclntshcore.so not applicable OCI Instant Client data shared Library

libociei.so oraociei20.dll OCI Instant Client data shared library

libnnz20.so orannzsbb20.dll Security library

libons.so oraons.dll ONS library

Table D-3 Instant Client Files in the Lightweight OCI Package

Linux and UNIX Windows Description

libclntsh.so.20.1 oci.dll Client code library

libociicus.so oraociicus20.dll OCI Instant Client data shared library (English
only)

libnnz20.so orannzsbb20.dll Security library

D.3 Installing SQL*Plus Instant Client from the 20c Client
Release Media

1. Run the installer on the Oracle Database 20c Client Release media and choose
the Administrator option.

Appendix D
Installing SQL*Plus Instant Client from the 20c Client Release Media

D-3

2. Create a new directory, for example, /home/instantclient_20_1 on UNIX and Linux,
or c:\instantclient_20_1 on Windows.

3. Copy the SQL*Plus Instant Client and the OCI Instant Client files to the new
directory. All files must be copied from the same ORACLE_HOME.

See Installing SQL*Plus Instant Client on UNIX or Linux or Installing SQL*Plus
Instant Client on Windows for a list of the files to copy.

4. Configure SQL*Plus Instant Client. See About Configuring SQL*Plus Instant
Client.

D.3.1 Installing SQL*Plus Instant Client on UNIX or Linux
To install SQL*Plus Instant Client using the Basic OCI package on UNIX and Linux,
copy the following files:

$ORACLE_HOME/instantclient/libociei.so
$ORACLE_HOME/lib/libclntsh.so.20.1
$ORACLE_HOME/lib/libnnz20.so
$ORACLE_HOME/lib/libsqlplus.so
$ORACLE_HOME/lib/libsqlplusic.so
$ORACLE_HOME/bin/sqlplus

To install SQL*Plus Instant Client using the lightweight OCI package on UNIX and
Linux, copy the following files:

$ORACLE_HOME/instantclient/light/libociicus.so
$ORACLE_HOME/lib/libclntsh.so.20.1
$ORACLE_HOME/lib/libnnz20.so
$ORACLE_HOME/lib/libsqlplus.so
$ORACLE_HOME/lib/libsqlplusic.so
$ORACLE_HOME/bin/sqlplus

D.3.2 Installing SQL*Plus Instant Client on Windows
To install SQL*Plus Instant Client using the Basic OCI package on Windows, copy the
following files:

ORACLE_HOME\instantclient\oraociei20.dll
ORACLE_HOME\bin\oci.dll
ORACLE_HOME\bin\orannzsbb20.dll
ORACLE_HOME\bin\orasqlplusic20.dll
ORACLE_HOME\bin\sqlplus.exe

To install SQL*Plus Instant Client using the lightweight OCI package on Windows,
copy the following files:

ORACLE_HOME\instantclient\light\oraociicus20.dll
ORACLE_HOME\bin\oci.dll
ORACLE_HOME\bin\orannzsbb20.dll
ORACLE_HOME\bin\orasqlplusic20.dll
ORACLE_HOME\bin\sqlplus.exe

D.4 About Configuring SQL*Plus Instant Client
The SQL*Plus Instant Client executable should only be used with the matching version
of the OCI Instant Client.

Appendix D
About Configuring SQL*Plus Instant Client

D-4

Note that no ORACLE_HOME or ORACLE_SID environment variables need to be set.

D.4.1 Configuring SQL*Plus Instant Client on Linux (from RPMs)
The RPMs downloaded from OTN install into Oracle specific sub-directories in the /usr
file system. The sub-directory structure enables multiple versions of Instant Client to
be available.

1. Add the name of the directory containing the Instant Client libraries to
LD_LIBRARY_PATH. Remove any other Oracle directories.

For example, to set LD_LIBRARY_PATH on Solaris in the Bourne or Korn shells:

LD_LIBRARY_PATH=/usr/lib/oracle/20.1/client/lib:${LD_LIBRARY_PATH}
export LD_LIBRARY_PATH

2. Make sure the sqlplus executable installed from the RPM is the first found in your
PATH. To test, enter which sqlplus which should return /usr/bin/sqlplus. If not,
remove any other Oracle directories from PATH, or put /usr/bin before other
SQL*Plus executables in PATH, or use an absolute or relative path to start
SQL*Plus.

For example, to set PATH in the bash shell:

PATH=/usr/bin:${PATH}
export PATH

If you install multiple versions of SQL*Plus, you may need to change the symbolic
link /usr/bin/sqlplus to the version of SQL*Plus matching the libraries in
LD_LIBRARY_PATH. For 20.1, /usr/bin/sqlplus is a symbolic link to the SQL*Plus
binary at /usr/lib/oracle/20.1/client/bin/sqlplus.

3. Set Oracle globalization variables required for your locale. A default locale will be
assumed if no variables are set. See Locale Data for more information.

For example:

NLS_LANG=AMERICAN_AMERICA.UTF8
export NLS_LANG

D.4.2 Configuring SQL*Plus Instant Client on Linux (from Client Media
or Zip File) and UNIX

1. Add the name of the directory containing the Instant Client files to the appropriate
shared library path LD_LIBRARY_PATH, LIBPATH or SHLIB_PATH. Remove any
other Oracle directories.

For example on Solaris in the Bourne or Korn shells:

LD_LIBRARY_PATH=/home/instantclient_20_1:${LD_LIBRARY_PATH}
export LD_LIBRARY_PATH

2. Add the directory containing the Instant Client files to the PATH environment
variable. If it is not set, then an absolute or relative path must be used to start
SQL*Plus. Remove any other Oracle directories from PATH. For example:

PATH=/home/instantclient_20_1:${PATH}
export PATH

3. Set Oracle globalization variables required for your locale. A default locale will be
assumed if no variables are set. See Locale Data for more information.

Appendix D
About Configuring SQL*Plus Instant Client

D-5

For example:

NLS_LANG=AMERICAN_AMERICA.UTF8
export NLS_LANG

D.4.3 Configuring SQL*Plus Instant Client on Windows
The environment may be configured using SET commands in a Windows command
prompt or made permanent by setting Environment Variables in System Properties.

For example, to set environment variables in Windows 2000 using System Properties,
open System from the Control Panel, click the Advanced tab and then click
Environment Variables.

1. Add the directory containing the Instant Client files to the PATH system
environment variable. Remove any other Oracle directories from PATH.

For example, add c:\instantclient20_2 to the beginning of PATH.

2. Set Oracle globalization variables required for your locale. A default locale will be
assumed if no variables are set. See Locale Datafor more information. For
example, to set NLS_LANG for a Japanese environment, create a user
environment variable NLS_LANG set to JAPANESE_JAPAN.JA16EUC.

If you have installed the lightweight Instant Client, see Lightweight Instant Client
for information about supported NLS_LANG settings.

D.5 About Connecting to a Database with SQL*Plus Instant
Client

SQL*Plus Instant Client is always 'remote' from any database server. To connect to a
database you must specify the database using an Oracle Net connection identifier.

An example using an Easy Connection identifier to connect to the HR schema in the
MYDB database running on mymachine is:

sqlplus hr/your_password@\"//mymachine.mydomain:port/MYDB\"

Alternatively you can use a Net Service Name:

sqlplus hr/your_password@MYDB

Net Service Names can be stored in a number of places, including LDAP. The use of
LDAP is recommended to take advantage of the new features of Oracle Database 12c.
See Local Naming Parameters in the tnsnames.ora Filefor more information.

If you want to use Net Service Names configured in a local Oracle Net tnsnames.ora
file, then set the environment variable TNS_ADMIN to the directory containing the
tnsnames.ora file. For example, on UNIX, if your tnsnames.ora file is in /home/user1
and it defines the Net Service Name MYDB2:

TNS_ADMIN=/home/user1
export TNS_ADMIN
sqlplus hr@MYDB2

If TNS_ADMIN is not set, then an operating system dependent set of directories is
examined to find tnsnames.ora. This search path includes looking in the directory
specified by the ORACLE_HOME environment variable for network/admin/

Appendix D
About Connecting to a Database with SQL*Plus Instant Client

D-6

tnsnames.ora. This is the only reason to set the ORACLE_HOME environment
variable for SQL*Plus Instant Client. If ORACLE_HOME is set when running Instant
Client applications, it must be set to a directory that exists.

This example assumes the ORACLE_HOME environment variable is set, and
the $ORACLE_HOME/network/admin/tnsnames.ora or ORACLE_HOME\network
\admin\tnsnames.ora file defines the Net Service Name MYDB3:

sqlplus hr@MYDB3

The TWO_TASK (on UNIX) or LOCAL (on Windows) environment variable can be set
to a connection identifier. This removes the need to explicitly enter the connection
identifier whenever a connection is made in SQL*Plus or SQL*Plus Instant Client. This
UNIX example connects to the database known as MYDB4:

TNS_ADMIN=/home/user1
export TNS_ADMIN
TWO_TASK=MYDB4
export TWO_TASK
sqlplus hr

On Windows, TNS_ADMIN and LOCAL may be set in the System Properties. See
Configuring SQL*Plus Instant Client on Windows.

D.6 AS SYSDBA or AS SYSOPER Connections with
SQL*Plus Instant Client

To connect AS SYSDBA or AS SYSOPER to perform DBA tasks, you need to set up
an Oracle password file on the database server using the database's orapwd utility.
Once this is configured, your SQL*Plus Instant Client connection string might look
something like:

sqlplus sys@MYDB AS SYSDBA

See Using Password File Authenticationfor information on Oracle password files.

D.7 About Uninstalling Instant Client
The SQL*Plus Instant Client package can be removed separately from the OCI Instant
Client. After uninstalling the SQL*Plus Instant Client package, the remaining OCI
Instant Client libraries enable custom written OCI programs or third party database
utilities to connect to a database.

D.7.1 Uninstalling SQL*Plus Instant Client
1. For installations on Linux from RPM packages, use rpm -e only on the SQL*Plus

Instant Client package

or

For installations on UNIX and Windows, and installations on Linux from the Client
Release media, manually remove the following SQL*Plus specific files:

Appendix D
AS SYSDBA or AS SYSOPER Connections with SQL*Plus Instant Client

D-7

Table D-4 Instant Client Files in the SQL*Plus Package

UNIX Windows Description

sqlplus sqlplus.exe SQL*Plus executable

libsqlplus.so not applicable SQL*Plus library

libsqlplusic.so orasqlplusic20.dll SQL*Plus data shared library

2. Reset environment variables and remove tnsnames.ora if necessary.

D.7.2 Uninstalling the Complete Instant Client
1. For installations on Linux from RPM packages, use rpm -qa to find the SQL*Plus

Instant Client and Basic OCI package names and run rpm -e to remove them

or

For installations on UNIX and Windows, and installations on Linux from the Client
Release media, manually delete the directory containing the SQL*Plus executable
and Oracle libraries.

See Installing SQL*Plus Instant Client from the 20c Client Release Media for a list
of the files you copied to the directory.

2. Reset environment variables such as PATH, SQLPATH, LD_LIBRARY_PATH and
TNS_ADMIN.

3. Remove tnsnames.ora if necessary.

Appendix D
About Uninstalling Instant Client

D-8

Index

Symbols
_CONNECT_IDENTIFIER predefined variable,

2-5, 13-36, 13-37
_DATE predefined variable, 13-36, 13-37
_EDITOR predefined variable, 5-1, 13-36, 13-37,

13-47, 13-48
_EDITOR substitution variable, 13-38
_EDITOR, in EDIT command, 5-1, 13-38, 13-47
_O_RELEASE predefined variable, 13-36, 13-37
_O_VERSION predefined variable, 13-36, 13-37
_PRIVILEGE predefined variable, 13-36, 13-37
_RC predefined variable, 13-55
_SQLPLUS_RELEASE predefined variable,

13-36, 13-37, 13-39
_USER predefined variable, 13-36, 13-37
-~ negative infinity sign, 13-24
-MARKUP, 3-9, 8-1

SQLPLUS command clause, 3-10, 13-102
-SILENT option, 3-14, 8-6
; (semicolon), 4-4, 5-3, 13-56
((amp)) (ampersand)

disabling substitution variables, 6-20
substitution variables, 6-2

((colon)) (colon)
bind variables, 6-27

((colon))BindVariable clause
EXIT command, 13-50

((nbsp))- (hyphen)
clause, 3-8
continuing a long SQL*Plus command, 4-8,

13-1
((nbsp))-- (comment delimiter), 5-8
((nbsp)). (period), 4-5
((nbsp))/ (slash) command

default logon, 3-14, 13-34
entered at buffer line-number prompt, 4-5,

13-7
entered at command prompt, 13-7
executing current PL/SQL block, 4-6
similar to RUN, 13-7, 13-71
usage, 13-7

@ (at sign)
command, 2-6, 5-11, 13-4
command arguments, 13-5, 13-6

@ (at sign) (continued)
in CONNECT command, 13-33
in COPY command, B-1, B-4
in SQLPLUS command, 3-7
passing parameters to a script, 13-4, 13-6
script, 5-11, 13-4
similar to START, 5-11, 13-134

@ at sign)
similar to START, 13-4

@@ (double at sign) command, 2-6, 13-5
script, 13-6
similar to START, 13-5, 13-134

* (asterisk)
in DEL command, 5-3, 13-40
in LIST command, 5-3, 13-57

/*...*/ (comment delimiters), 5-8
pound sign

overflow indication, 13-24
SET SQLPREFIX character, 13-116

~ infinity sign, 13-24
$ number format, 7-4

Numerics
0, number format, 7-4
9, number format, 7-4

A
ABORT mode, 13-130
abort query, 4-9
ACCEPT command, 6-24, 13-7

and DEFINE command, 13-35
BINARY_DOUBLE clause, 13-8, 13-146
BINARY_FLOAT clause, 13-8, 13-146
customizing prompts for value, 6-25
DATE clause, 13-8
DEFAULT clause, 13-8
FORMAT clause, 13-8
HIDE clause, 13-9
NOPROMPT clause, 13-8
NUMBER clause, 6-25
PROMPT clause, 6-25, 13-8

alias, 3-4

Index-1

ALIAS clause, 13-21
in ATTRIBUTE command, 13-11

ALL clause, 13-124
ampersands (((amp)))

in parameters, 6-21, 13-4, 13-6, 13-134
substitution variables, 6-2

APPEND clause
in COPY command, B-2, B-6
in SAVE command, 13-72, 13-132

APPEND command, 5-2, 5-5, 13-9
APPINFO clause, 9-9, 13-78
ARCHIVE LOG

command, 11-4, 13-10
mode, 11-4

argument
in START command, 6-21

ARRAYSIZE variable, 9-9, 13-74, 13-79
relationship to COPY command, B-3, B-7

ATTRIBUTE command, 13-11
ALIAS clause, 13-11
and CLEAR COLUMN command, 13-12
CLEAR clause, 13-11
clearing columns, 13-19, 13-21
controlling display characteristics, 13-12
display characteristics, 13-11
entering multiple, 13-12
FORMAT clause, 13-12
LIKE clause, 13-12
listing attribute display characteristics, 13-11
OFF clause, 13-12
ON clause, 13-12
restoring column display attributes, 13-12
suppressing column display attributes, 13-12

AUTOCOMMIT variable, 4-10, 13-74, 13-79
AUTOMATIC clause, 13-61
AUTOPRINT variable, 13-74, 13-80
AUTORECOVERY variable, 13-74, 13-80
autotrace report, 9-1
AUTOTRACE variable, 9-1, 13-80

B
background process

startup after abnormal termination, 13-131
BASEURI variable, 13-77
BASEURI XQUERY option, 13-121
basic OCI package, D-1
batch jobs, authenticating users in, 3-2
batch mode, 13-50
BEGIN command, 4-6
BINARY_DOUBLE clause

ACCEPT command, 13-8, 13-146
VARIABLE command, 13-146

BINARY_FLOAT clause
ACCEPT command, 13-8, 13-146

BINARY_FLOAT clause (continued)
VARIABLE command, 13-146

bind variables, 6-27
creating, 13-144
displaying, 13-59
displaying automatically, 13-80, 13-146
in PL/SQL blocks, 13-146
in SQL statements, 13-147
in the COPY command, 13-147

blank line
in PL/SQL blocks, 4-5
in SQL commands, 4-5
preserving in SQL commands, 13-76, 13-113

BLOB
column width, 7-5
formating in reports, 7-4

BLOB columns
default format, 13-22
setting maximum width, 13-75, 13-100
setting retrieval position, 13-75, 13-99
setting retrieval size, 9-10, 13-75, 13-101

blocks, PL/SQL
continuing, 4-5
editing in buffer, 5-2
editing with system editor, 5-1, 13-47
entering and executing, 4-5
listing current in buffer, 5-3
saving current, 13-72
setting character used to end, 13-74, 13-81
stored in SQL buffer, 4-5
timing statistics, 13-119
within SQL commands, 4-6

BLOCKTERMINATOR, 13-74, 13-81, 13-114,
13-117

BODY clause, 3-10
BODY option, 3-10
BOLD clause, 13-70, 13-143
break columns, 7-9, 13-13

inserting space when value changes, 7-11
specifying multiple, 7-12
suppressing duplicate values in, 7-10

BREAK command, 7-9, 13-12
and SQL ORDER BY clause, 7-9, 7-10, 7-12,

13-13
clearing BREAKS, 7-13
displaying column values in titles, 7-24
DUPLICATES clause, 13-15
inserting space after every row, 7-11
inserting space when break column changes,

7-11
listing current break definition, 7-13, 13-15
ON column clause, 7-10, 13-13
ON expr clause, 13-14
ON REPORT clause, 7-16, 13-14
ON ROW clause, 7-11, 13-14

Index

Index-2

BREAK command (continued)
printing grand and sub summaries, 7-16
printing summary lines at ends of reports,

7-16
removing definition, 13-19
SKIP clause, 7-11, 13-14
SKIP PAGE clause, 7-11, 13-14
specifying multiple break columns, 7-12,

13-13
suppressing duplicate values, 7-10
used in conjunction with COMPUTE, 7-13
used in conjunction with SET COLSEP,

13-83
used to format a REFCURSOR variable,

13-147
used with COMPUTE, 13-13, 13-14, 13-30

break definition
listing current, 7-13, 13-15
removing current, 7-13, 13-19

BREAKS clause, 7-13, 13-19
browser, web, 8-2
BTITLE clause, 13-125
BTITLE command, 7-19, 13-16

aligning title elements, 13-142
BOLD clause, 13-143
CENTER clause, 13-142
COL clause, 13-142
FORMAT clause, 13-143
indenting titles, 13-142
LEFT clause, 13-142
OFF clause, 13-142
old form, C-2
printing blank lines before bottom title, 7-21
referencing column value variable, 13-25
RIGHT clause, 13-142
SKIP clause, 13-142
suppressing current definition, 13-142
TAB clause, 13-142
TTITLE command, 13-16

buffer, 4-2
appending text to a line in, 5-5, 13-9
delete a single line, 5-2
delete the current line, 5-3
delete the last line, 5-3
deleting a range of lines, 5-3, 13-39
deleting a single line, 13-39
deleting all lines, 5-2, 13-19, 13-40
deleting lines from, 5-7, 13-39
deleting the current line, 13-40
deleting the last line, 13-40
executing contents, 13-7, 13-71
inserting new line in, 5-6, 13-55
listing a range of lines, 5-3, 13-57
listing a single line, 5-2, 13-57
listing all lines, 5-3, 13-57

buffer (continued)
listing contents, 5-3, 13-56
listing the current line, 5-3, 13-57
listing the last line, 5-3, 13-57
loading into system editor, 13-47
saving contents, 13-72

BUFFER clause, 5-2, 13-19
BUFFER variable, C-3

C
CANCEL clause, 13-63, 13-66
Cancel key, 4-9
cancel query, 4-9
CENTER clause, 7-21, 13-70, 13-142
CHANGE command, 5-2, 5-4, 13-17
CHAR clause

VARIABLE command, 13-145
CHAR columns

changing format, 13-22
default format, 7-5
definition from DESCRIBE, 13-41

charset
SQL*Plus Instant Client, D-1

CLEAR clause, 7-8, 13-21, 13-53
in ATTRIBUTE command, 13-11

CLEAR command, 13-19
BREAKS clause, 7-13, 13-19
BUFFER clause, 5-2, 13-19
COLUMNS clause, 13-19
COMPUTES clause, 13-19
SCREEN clause, 6-26, 13-19
SQL clause, 13-19
TIMING clause, 13-20

CLOB clause
VARIABLE command, 13-146

CLOB columns
changing format, 13-22
default format, 13-22
setting maximum width, 13-75, 13-100
setting retrieval position, 13-75, 13-99
setting retrieval size, 9-10, 13-75, 13-101

CLOSECURSOR variable, C-1, C-4
CMDSEP variable, 13-74, 13-81
COL clause, 7-21, 13-70, 13-142
COLINVISIBLE variable, 13-82
colons (((colon)))

bind variables, 6-27
COLSEP variable, 13-74, 13-83
COLUMN command, 7-1, 13-20

ALIAS clause, 13-21
and BREAK command, 13-14
and DEFINE command, 13-36
CLEAR clause, 7-8, 13-21
DEFAULT clause, C-2

Index

3

COLUMN command (continued)
displaying column values in bottom titles,

7-24, 13-25
displaying column values in top titles, 7-24,

13-25
entering multiple, 13-26
ENTMAP clause, 13-21
FOLD_AFTER clause, 13-21
FOLD_BEFORE clause, 13-21
FORMAT clause, 7-3, 7-5, 13-21
formatting a REFCURSOR variable, 13-147
formatting NUMBER columns, 7-3, 13-22
HEADING clause, 7-1, 13-24
HEADSEP character, 13-24
JUSTIFY clause, 13-24
LIKE clause, 7-7, 13-24
listing column display attributes, 7-7, 13-20
NEW_VALUE clause, 7-24, 13-25
NEWLINE clause, 13-24
NOPRINT clause, 7-25, 9-9, 13-25
NULL clause, 13-25
OFF clause, 7-8, 13-26
OLD_VALUE clause, 7-24, 13-25
ON clause, 7-8, 13-26
PRINT clause, 13-25
resetting a column to default display, C-1
resetting to default display, 7-8, 13-21, C-1
restoring column display attributes, 7-8,

13-26
storing current date in variable for titles,

13-27
suppressing column display attributes, 7-8,

13-26
TRUNCATED clause, 7-6, 13-26
WORD_WRAPPED clause, 7-6, 7-8, 13-26
WRAPPED clause, 7-6, 13-26

column headings
aligning, 13-24
changing, 7-1, 13-24
changing character used to underline, 13-77,

13-120
changing to two or more words, 7-2, 13-24
displaying on more than one line, 7-2, 13-24
suppressing printing in a report, 13-75, 13-95
when truncated, 13-22
when truncated for CHAR and LONG

columns, 7-5
when truncated for DATE columns, 7-5
when truncated for NUMBER columns, 7-3

column separator, 13-74, 13-83, C-1
columns

assigning aliases, 13-21
computing summary lines, 7-13, 13-28
copying display attributes, 7-7, 13-12, 13-24
copying values between tables, B-1, B-3, B-7

columns (continued)
displaying values in bottom titles, 7-24, 13-25
displaying values in top titles, 7-24, 13-25
formatting CHAR, VARCHAR, LONG, and

DATE, 13-21
formatting in reports, 7-1, 13-20
formatting MLSLABEL, RAW MLSLABEL,

ROWLABEL, 13-21
formatting NUMBER, 7-3, 13-22
listing display attributes for all, 7-7, 13-20
listing display attributes for one, 7-7, 13-20
names in destination table when copying,

B-2, B-4
printing line after values that overflow, 7-8,

13-76, 13-108
resetting a column to default display, 7-8,

13-21, C-1
resetting all columns to default display, 13-19
restoring display attributes, 7-8, 13-12, 13-26
setting printing to off or on, 7-25, 9-9, 13-25
starting new lines, 13-24
storing values in variables, 7-24, 13-25
suppressing display attributes, 7-8, 13-12,

13-26
truncating display for all when value

overflows, 7-6, 13-121
truncating display for one when value

overflows, 7-6, 13-26
wrapping display for all when value

overflows, 7-6, 13-121
wrapping display for one when value

overflows, 7-6, 13-26
wrapping whole words for one, 7-8

COLUMNS clause, 13-19
comma, number format, 7-4
command files

aborting and exiting with a return code, 5-12,
13-152, 13-153

creating with a system editor, 5-1
creating with SAVE, 13-72, 13-86
editing with system editor, 13-47
in @ (at sign) command, 5-11, 13-4
in EDIT command, 13-47
in GET command, 13-51
in SAVE command, 5-2, 13-72
in SQLPLUS command, 3-15, 5-11
in START command, 5-10, 13-133
including comments in, 5-7, 13-67
including more than one PL/SQL block, 5-2
including more than one SQL command, 5-2
nesting, 5-12
passing parameters to, 6-21, 13-4, 13-6,

13-134
registering, 13-74, 13-78
retrieving, 13-50

Index

Index-4

command files (continued)
running, 5-10, 13-4, 13-133
running a series in sequence, 5-12
running as you start SQL*Plus, 3-15, 5-11
running in batch mode, 5-12, 13-50
uniform resource locator, 13-4–13-6, 13-133

command history
SQL*Plus, 13-52

command prompt
SET SQLPROMPT, 9-10, 13-77, 13-116
SQL*Plus, 3-6

command-line
configuring globalization support, 12-1
installing help, 2-7

command-line interface
changing face and size, 1-1

commands
collecting timing statistics on, 9-6, 13-141
disabled in schema, 14-14
disabling, 10-1
echo on screen, 13-86
host, running from SQL*Plus, 4-9, 13-54
listing current in buffer, 13-56
re-enabling, 10-1
spaces, 4-1
SQL

continuing on additional lines, 4-4
editing in buffer, 5-2
editing with system editor, 13-47
ending, 4-5
entering and executing, 4-3
entering without executing, 4-5
executing current, 13-7, 13-71
following syntax, 4-4
listing current in buffer, 5-3
saving current, 13-72
setting character used to end and run,

13-77
SQL*Plus

command summary, 13-1
continuing on additional lines, 4-8, 13-1
ending, 4-8, 13-1
entering and executing, 4-7
entering during SQL command entry,

13-116
obsolete command alternatives, C-1

stopping while running, 4-9
tabs, 4-1
types of, 4-1
variables that affect running, 4-8

comments
including in command files, C-1
including in scripts, 5-7, 13-67, C-1
using -- to create, 5-8
using /*...*/ to create, 5-8

comments (continued)
using REMARK, C-1
using REMARK to create, 5-7, 13-67, C-1

COMMIT clause, 13-49
WHENEVER OSERROR, 13-151
WHENEVER SQLERROR, 13-152

COMMIT command, 4-10
communication between tiers, xix
COMPATIBILITY variable, C-1, C-3
compilation errors, 4-6, 13-125, 14-1
COMPUTE command, 7-9, 13-28

computing a summary on different columns,
7-17

LABEL clause, 7-14, 7-16, 13-29
listing all definitions, 7-18, 13-29
maximum LABEL length, 13-29
OF clause, 7-13
ON, 13-29
ON column clause, 7-13, 13-29
ON expr clause, 13-29
ON REPORT clause, 7-16, 13-29
printing grand and sub summaries, 7-16
printing multiple summaries on same column,

7-17
printing summary lines at ends of reports,

7-16
printing summary lines on a break, 7-13
referencing a SELECT expression in OF,

13-29
referencing a SELECT expression in ON,

13-29
removing definitions, 7-18, 13-19
used to format a REFCURSOR variable,

13-147
COMPUTES clause, 13-19
CON_ID clause, 13-124
CON_NAME clause, 13-124
CONCAT variable, 6-20, 13-74, 13-84
configuration

globalization support, 12-1
configuring

Oracle Net, 2-8
SQL*Plus, 2-1

CONNECT / feature, 3-2
CONNECT command, 3-1, 13-32

and @ (at sign), 13-33
changing password, 13-33, 13-34, 13-58
SYSASM clause, 13-34
SYSBACKUP clause, 13-34
SYSDBA clause, 13-34
SYSDG clause, 13-34
SYSKM clause, 13-34
SYSOPER clause, 13-34
SYSRAC clause, 13-34
username/password, 13-33

Index

5

connect identifier, 13-33
in CONNECT command, 13-33
in COPY command, B-1
in DESCRIBE command, 13-41
in SQLPLUS command, 3-14

connection identifier, 3-3
easy or abbreviated, 3-4
full, 3-4
net service name, 3-4

CONTEXT variable, 13-77
CONTEXT XQUERY option, 13-123
CONTINUE clause

WHENEVER OSERROR, 13-151
WHENEVER SQLERROR, 13-152

continuing a long SQL*Plus command, 4-8, 13-1
COPY command, 13-35, B-1, B-3

and @ (at sign), B-1, B-4
and ARRAYSIZE variable, B-3, B-7
and COPYCOMMIT variable, B-3, B-7
and LONG variable, B-3, B-6
APPEND clause, B-2, B-6
copying data between databases, B-3
copying data between tables on one

database, B-7
CREATE clause, B-2, B-5
creating a table, B-2, B-5
destination table, B-2, B-4
determining actions, B-4
determining source rows and columns, B-3,

B-5
error messages, 14-36
FROM clause, B-4
INSERT clause, B-2, B-5
inserting data in a table, B-2, B-5, B-6
interpreting messages, B-6
mandatory connect identifier, B-2
naming the source table with SELECT, B-3,

B-5
query, B-3, B-5
referring to another user’s table, B-7
REPLACE clause, B-2, B-5
replacing data in a table, B-2, B-5
sample command, B-4, B-5
service name, B-4, B-6, B-7
specifying columns for destination, B-2, B-4
specifying the data to copy, B-3, B-5
TO clause, B-4
username/password, B-1, B-4, B-6, B-7
USING clause, B-3, B-5

COPYCOMMIT variable, 13-74, 13-84
relationship to COPY command, B-3, B-7

COPYTYPECHECK variable, 13-74, 13-84
CREATE clause

in COPY command, B-2, B-5

CREATE command
entering PL/SQL, 4-6

creating a PLAN_TABLE, 9-2
creating flat files, 7-27
creating PLUSTRACE role, 9-2
creating sample tables, xxii
CSV, 8-5

clause, 3-10, 13-102
option, 3-10

csv, outputting reports, 8-1
cursor variables, 13-147

D
database

administrator, 11-1
connect identifier, 13-33
mounting, 13-137
opening, 13-137

database changes, saving automatically, 13-74,
13-79

DATABASE clause, 13-63
database files

recovering, 13-61
database name at startup, 13-135
database schema, 9-1

DESCRIBE parameter, 13-41
SHOW, 13-124, 13-125

databases
connecting to default, 13-33
connecting to remote, 13-33
copying data between, B-1, B-3
copying data between tables on a single, B-7
disconnecting without leaving SQL*Plus, 3-2,

13-47
mounting, 11-1
opening, 11-1
recovering, 11-4, 13-61
shutting down, 11-1, 11-3
starting, 11-1

DATAFILE clause, 13-63
DATE

column definition from DESCRIBE, 13-41
DATE clause, 13-8
DATE columns

changing format, 13-22, 13-27
default format, 7-5

date, storing current in variable for titles, 7-25,
13-25, 13-27

DB2, 13-84
DBA, 11-1

mode, 13-136
privilege, 13-136

DBMS output, 9-10, 13-111

Index

Index-6

DBMS_APPLICATION_INFO package, 9-9,
13-74, 13-78

DECLARE command
PL/SQL, 4-6

DEFAULT clause, 13-8
DEFINE command, 6-1, 13-35

and system editor, 5-1, 13-38
and UNDEFINE command, 6-1, 13-144
CHAR values, 13-35
SET DEFINE ON|OFF, 13-74, 13-84
substitution variables, 13-36

DEFINE variable
See substitution variable

DEL command, 5-2, 5-7, 13-39
using an asterisk, 5-3, 13-40

DEL[ETE] clause, 13-53
DELIMITER clause, 13-102
DESCRIBE command (SQL*Plus), 4-2, 13-41

connect_identifier, 13-41
PL/SQL properties listed by, 13-42
table properties listed by, 13-41

disabling
PL/SQL commands, 10-3
SQL commands, 10-1
SQL*Plus commands, 10-1

DISCONNECT command, 3-2, 13-47
DOCUMENT command, C-1, C-2

REMARK as newer version of, C-2
DOCUMENT variable, C-1, C-4
DUPLICATES clause, 13-15

E
ECHO

SET command, 13-86
ECHO variable, 5-11, 13-74, 13-86
Ed on UNIX, 13-38
EDIT clause, 13-53
EDIT command, 5-1, 13-37, 13-47

creating scripts with, 5-1
defining _EDITOR, 13-47
modifying scripts, 13-47
setting default file name, 13-74, 13-86

EDITFILE variable, 13-74, 13-86
edition, 3-14, 13-33

in CONNECT command, 13-33
in SQLPLUS command, 3-14

EDITOR operating system variable, 13-38
EMBEDDED variable, 13-74, 13-86
entities, HTML, 8-5
ENTMAP, 3-10
ENTMAP clause, 3-10, 8-5, 13-21
environment variables

LD_LIBRARY_PATH, 2-1
LOCAL, 2-1

environment variables (continued)
NLS_LANG, 2-1
ORA_EDITION, 2-2
ORA_NLS10, 2-2
ORACLE_HOME, 2-1
ORACLE_PATH, 2-2
ORACLE_SID, 2-2
PATH, 2-2
SQL*Plus, 2-1
SQLPATH, 2-2
TNS_ADMIN, 2-2
TWO_TASK, 2-3

error
SQL*Plus Instant Client unsupported charset,

D-2
error messages

COPY command, 14-36
interpreting, 4-11
sqlplus, 14-1

ERRORLOGGING variable, 13-86
errors

compilation errors, 4-6, 13-125, 14-1
making line containing current, 5-4

escape characters, definition of, 13-75, 13-91
ESCAPE variable, 6-20, 13-75, 13-91
ESCCHAR variable, 13-92
example

CSV report, 8-5
interactive HTML report, 8-2, 8-3

EXECUTE command, 13-48
executing

a CREATE command, 4-6
execution plan, 9-2
execution statistics

including in report, 13-80
EXIT clause

WHENEVER OSERROR, 13-151
WHENEVER SQLERROR, 13-152

EXIT command, 3-7, 13-49
((colon))BindVariable clause, 13-50
COMMIT clause, 13-49
FAILURE clause, 13-49
in a script, 13-134
ROLLBACK clause, 13-50
use with SET MARKUP, 8-2
WARNING clause, 13-49

exit, conditional, 13-151
EXITCOMMIT variable, 13-92
extension, 13-73, 13-118, 13-140

F
FAILURE clause, 13-49
FEEDBACK variable, 13-75, 13-93
file extensions, 2-6, 13-73, 13-118, 13-140

Index

7

file names
in @ (at sign) command, 13-4
in @@ (double at sign) command, 13-6
in EDIT command, 13-47
in GET command, 13-51
in SAVE command, 13-72
in SPOOL command, 7-28, 13-132
in SQLPLUS command, 3-15

files
flat, 7-27
required for SQL*Plus Instant Client, D-3

FLAGGER variable, 13-75, 13-94
flat file, 7-27
FLUSH variable, 9-9, 13-75, 13-95
FOLD_AFTER clause, 13-21
FOLD_BEFORE clause, 13-21
font

changing face and size in command-line, 1-1
footers

aligning elements, 13-70
displaying at bottom of page, 13-68
displaying system-maintained values, 13-70
formatting elements, 13-70
indenting, 13-70
listing current definition, 13-68
setting at the end of reports, 7-19
suppressing definition, 13-70

FORCE clause, 13-136
FORMAT clause, 13-8, 13-21

in ATTRIBUTE command, 13-12
in COLUMN command, 7-3, 7-5
in REPHEADER and REPFOOTER

commands, 13-70
in TTITLE and BTITLE commands, 7-23,

13-143
format models, number, 7-4, 13-24
formfeed, to begin a new page, 7-26, 13-106
FROM clause, 13-62, B-4

G
GET command, 13-50

LIST clause, 13-51
NOLIST clause, 13-51
retrieving scripts, 13-51

globalization support,
Oracle10g, 12-3

glogin, 2-4
profile, 13-116
site profile, 2-4, 2-5, 3-13, 13-115

See also login.sql

H
HEAD clause, 3-10

HEAD option, 3-10
headers

aligning elements, 7-20
displaying at top of page, 13-69
displaying system-maintained values, 13-70
setting at the start of reports, 7-19
suppressing, 7-20

HEADING clause, 7-1, 13-24
HEADING variable, 13-95
headings

aligning elements, 13-70
column headings, 13-95
formatting elements, 13-70
indenting, 13-70
listing current definition, 13-69
suppressing definition, 13-70

HEADSEP variable, 13-75, 13-96
use in COLUMN command, 7-2

help
installing command-line, 2-7
online, 3-7, 13-51

HELP command, ? command, 13-51
HIDE clause, 13-9
HISTORY clause, 13-125
HISTORY command, 13-52

CLEAR clause, 13-53
EDIT clause, 13-53
DEL[ETE] clause, 13-53
LIST clause, 13-53
RUN clause, 13-52

HISTORY variable, 13-75
HOST command, 4-9, 13-54
HTML, 8-2

clause, 3-10
entities, 8-5
option, 3-10
spooling to file, 3-11
tag, 8-1

hyphen
continuing a long SQL*Plus command, 4-8,

13-1

I
IMMEDIATE mode, 13-131
infinity sign (~), 13-24
INIT.ORA file

parameter file, 13-136
initialization parameters

displaying, 13-125, 13-127
input

accepting values from the user, 6-24, 13-7
accepting [Return], 6-26

INPUT command, 5-3, 5-6, 13-55
entering several lines, 13-55

Index

Index-8

INSERT clause, B-2, B-5
installation

SQL*Plus Instant Client, D-1
SQL*Plus Instant Client by copying, D-1
SQL*Plus Instant Client by copying from 10g

Client, D-3
SQL*Plus Instant Client by download from

OTN, D-1, D-2
SQL*Plus Instant Client on Linux, D-2
SQL*Plus Instant Client on UNIX or

Windows, D-2
SQL*Plus Instant Client UNIX and Linux files

to copy, D-4
SQL*Plus Instant Client Windows files to

copy, D-4
installation by copying, D-1
installation by copying from 10g Client, D-3
installation by download from OTN, D-1, D-2
installation on Linux, D-2
installation on UNIX or Windows, D-2
installation, UNIX and Linux files to copy, D-4
installation, Windows files to copy, D-4
INSTANCE variable, 13-75, 13-97
instances

shutting down, 13-130
starting, 13-135

Instant Client
SQL*Plus, D-1

Instant Client packages, D-1

J
Japanese, 12-1
JUSTIFY clause, 13-24

L
LABEL variable

SHOW command, C-2
labels

in COMPUTE command, 7-14, 13-29
language

SQL*Plus Instant Client, D-1
LD_LIBRARY_PATH

environment variables, 2-1
LEFT clause, 7-21, 13-70, 13-142
lightweight OCI package, D-1
LIKE clause, 7-7, 13-12, 13-24
limits, SQL*Plus, A-1
lines

adding at beginning of buffer, 13-56
adding at end of buffer, 13-55
adding new after current, 5-6, 13-55
appending text to, 5-5, 13-9
changing width, 7-26, 9-10, 13-75, 13-98

lines (continued)
deleting all in buffer, 13-40
deleting from buffer, 5-7, 13-39
determining which is current, 5-4
editing current, 5-4
listing all in buffer, 5-3, 13-57
removing blanks at end, 13-120

LINESIZE variable, 7-20, 7-26, 13-75, 13-98
Linux

installing SQL*Plus Instant Client, D-2
SQL*Plus Instant Client files to copy, D-4

LIST clause, 13-10, 13-51, 13-53
LIST command, 5-3, 13-56

determining current line, 5-4, 13-57
making last line current, 5-4, 13-57
using an asterisk, 5-3, 13-57

LNO clause, 13-125
LOB data

setting prefetch size, 13-75
LOBOFFSET variable, 13-75, 13-99
LOBPREFETCH clause, 13-125
LOBPREFETCH variable, 13-75
LOCAL

environment variables, 2-1
LOG_ARCHIVE_DEST parameter, 13-10
LOGFILE clause, 13-62
logging off

conditionally, 13-151, 13-152
Oracle Database, 3-2, 13-47
SQL*Plus, 3-7, 13-49

logging on
Oracle Database, 13-33
SQL*Plus, 3-6

login
user profile, 2-5

login.sql, 2-4, 2-5
LONG

column definition from DESCRIBE, 13-41
LONG columns

changing format, 13-22
default format, 13-22
setting maximum width, 13-75, 13-100
setting retrieval size, 9-10, 13-75, 13-101

LONG variable, 13-75, 13-100
effect on COPY command, B-3, B-6

LONGCHUNKSIZE variable, 7-5, 13-22, 13-75,
13-101, 13-105

LONGRAW
column definition from DESCRIBE, 13-41

M
MARKUP, 3-9, 8-1, 13-102, 13-105

BODY clause, 3-10
DELIMITER clause, 13-102

Index

9

MARKUP (continued)
ENTMAP clause, 3-10
HEAD clause, 3-10
PREFORMAT clause, 3-12
QUOTE clause, 13-102
TABLE clause, 3-10

MAXDATA variable, C-1, C-4
media recovery, 13-137
message, sending to screen, 6-24, 13-60
MOUNT clause, 13-137
mounting a database, 13-137

N
national language support, 12-1

See also globalization support
NCHAR clause

VARIABLE command, 13-145
NCHAR columns

changing format, 13-22
default format, 7-5, 13-21

NCLOB clause
VARIABLE command, 13-146

NCLOB columns
changing format, 13-22
default format, 13-22
setting maximum width, 13-75, 13-100
setting retrieval position, 13-75, 13-99
setting retrieval size, 9-10, 13-75, 13-101

negative infinity sign (-~), 13-24
net service name, 3-3, 3-4
NEW_VALUE clause, 7-24, 13-25

storing current date in variable for titles,
13-25

NEWLINE clause, 13-24
NEWPAGE command, C-1, C-3
NEWPAGE variable, 7-26, 13-76, 13-106
NLS, 12-1
NLS_DATE_FORMAT, 13-8, 13-27
NLS_LANG

charset parameter for Instant Client, D-1
environment variables, 2-1
language parameter for Instant Client, D-1
SQL*Plus Instant Client, D-1
territory parameter for Instant Client, D-1

NODE variable, 13-77
NODE XQUERY option, 13-122
NOLIST clause, 13-51
NOLOG, 3-5, 3-15
nolongontime, 3-13
NOMOUNT clause, 13-137
NONE clause

WHENEVER OSERROR, 13-152
WHENEVER SQLERROR, 13-153

NOPARALLEL clause, 13-64

NOPRINT clause, 7-14, 7-25, 9-9, 13-25
NOPROMPT clause, 13-8
NORMAL mode, 13-131
Notepad on Windows, 13-38
NULL clause, 13-25
null values

setting text displayed, 13-25, 13-76, 13-106
NULL variable, 13-76, 13-106
NUMBER

column definition from DESCRIBE, 13-41
NUMBER clause, 6-25

VARIABLE command, 13-145
NUMBER columns

changing format, 7-3, 13-22
default format, 7-3, 13-24

number formats
$, 7-4
0, 7-4
9, 7-4
comma, 7-4
setting default, 6-20, 13-76, 13-106

NUMFORMAT clause
in LOGIN.SQL, 2-6

NUMFORMAT variable, 13-76, 13-106
NUMWIDTH variable, 13-76, 13-107

effect on NUMBER column format, 7-3,
13-24

NVARCHAR2 columns
changing format, 13-22
default format, 7-5, 13-21

O
objects, describing, 13-85
obsolete commands

BTITLE, C-2
COLUMN command DEFAULT clause, C-2
DOCUMENT, C-1, C-2
NEWPAGE, C-1, C-3
SET command BUFFER variable, C-3
SET command CLOSECURSOR variable,

C-1, C-4
SET command COMPATIBILITY variable,

C-1, C-3
SET command DOCUMENT variable, C-1,

C-4
SET command MAXDATA variable, C-1, C-4
SET command SCAN variable, C-1, C-5
SET command SPACE variable, C-1, C-5
SET command TRUNCATE variable, C-1,

C-5
SHOW command LABEL variable, C-2
TTITLE command old form, C-5

OCI Instant Client, D-1

Index

Index-10

OCI package
basic, D-1
lightweight, D-1

OF clause, 7-13
OFF clause, 13-26

in ATTRIBUTE command, 13-12
in COLUMN command, 7-8, 13-26
in REPFOOTER commands, 13-70
in REPHEADER commands, 13-70
in SPOOL command, 7-27, 13-132
in TTITLE and BTITLE commands, 7-24,

13-142
OLD_VALUE clause, 7-24, 13-25
ON clause

in ATTRIBUTE command, 13-12
in COLUMN command, 7-8, 13-26
in TTITLE and BTITLE commands, 7-24

ON column clause
in BREAK command, 13-13
in COMPUTE command, 7-13, 13-29

ON expr clause
in BREAK command, 13-14
in COMPUTE command, 13-29

ON REPORT clause
in BREAK command, 7-16, 13-14
in COMPUTE command, 7-16, 13-29

ON ROW clause
in BREAK command, 7-11, 13-14
in COMPUTE command, 13-29

online help, 3-7, 13-51
OPEN clause, 13-137
opening a database, 13-137
operating system

editor, 5-1, 13-38, 13-47
file, loading into buffer, 13-50
running commands from SQL*Plus, 4-9,

13-54
text editor, 5-1

ORA_EDITION
environment variables, 2-2

ORA_NLS10
environment variables, 2-2

Oracle Application Editions
edition, 3-14

Oracle Database Client, D-1
Oracle Net

configuring, 2-8
connect identifier, 13-33

Oracle Session Editions
edition, 13-33

ORACLE_HOME
environment variables, 2-1

ORACLE_PATH
environment variables, 2-2

ORACLE_SID
environment variables, 2-2

Oracle10g
globalization support, 12-3

ORDER BY clause
displaying column values in titles, 7-24
displaying values together in output, 7-9

ORDERING variable, 13-77
ORDERING XQUERY option, 13-122
OUT clause, 7-28, 13-132
output

formatting white space in, 9-10, 13-119
pausing during display, 4-9, 13-107

P
packages

SQL*Plus and OCI for Instant Client, D-1
PAGE clause, 13-69
page number, including in titles, 7-12, 7-22
pages

changing length, 7-26, 9-10, 13-76, 13-107
default dimensions, 7-25
matching to screen or paper size, 7-25
setting dimensions, 7-25

PAGESIZE clause
in LOGIN.SQL, 2-5

PAGESIZE variable, 4-4, 7-26, 9-10, 13-76,
13-107

parameter, 6-21, 13-4, 13-6, 13-134
SQLPATH, 2-3

parameter files (INIT.ORA files)
specifying alternate, 13-136

PARAMETERS clause, 13-125, 13-127
password

changing with the PASSWORD command,
13-58

in CONNECT command, 3-1, 13-33
in COPY command, B-4, B-6, B-7
in SQLPLUS command, 3-6, 3-14
viewable warning, 3-14

PASSWORD command, 13-33, 13-58
PATH

environment variables, 2-2
PAUSE command, 6-26, 13-58
PAUSE variable, 4-9, 13-76, 13-107
PDBS clause, 13-126
performance

of SQL statements, 9-1
over dial-up lines, 13-120

period (.)
terminating PL/SQL blocks, 4-5, 13-74, 13-81

PL/SQL, 4-5
blocks, PL/SQL, 4-5
executing, 13-48

Index

11

PL/SQL (continued)
formatting output in SQL*Plus, 13-147
listing definitions, 4-3
mode in SQL*Plus, 4-6
within SQL commands, 4-6

PLAN_TABLE
creating, 9-2
table, 9-1

PLUGGABLE DATABASE clause, 13-137
PLUSTRACE

creating role, 9-2
role, 9-1

PNO clause, 13-126
pound sign (#), 13-24
predefined variable

_CONNECT_IDENTIFIER, 2-5, 13-36, 13-37
_DATE, 13-36, 13-37
_EDITOR, 5-1, 13-36, 13-37, 13-47, 13-48
_O_RELEASE, 13-36, 13-37
_O_VERSION, 13-36, 13-37
_PRIVILEGE, 13-36, 13-37
_RC, 13-55
_SQLPLUS_RELEASE, 13-36, 13-37, 13-39
_USER, 13-36, 13-37

PREFORMAT, 3-11
PREFORMAT clause, 3-12
PRINT clause, 13-25
PRINT command, 13-59
printing

bind variables automatically, 13-80
REFCURSOR variables, 13-147
SPOOL command, 13-132

prompt
SET SQLPROMPT, 9-10, 13-77, 13-116

PROMPT clause, 6-25, 13-8
PROMPT command, 6-24, 13-60

customizing prompts for value, 6-25
prompts for value

bypassing with parameters, 6-21
customizing, 6-25
through ACCEPT, 6-24
through substitution variables, 6-2

Q
queries

in COPY command, B-3, B-5
show number of records retrieved, 4-4,

13-75, 13-93
tracing, 9-6, 9-8

query execution path
including in report, 13-80

query results
displaying on-screen, 4-4
sending to a printer, 7-28, 13-132

query results (continued)
storing in a file, 7-28, 13-132

QUIT command, 13-49, 13-134
See also EXIT

QUOTE clause, 13-102

R
RAW

column definition from DESCRIBE, 13-41
record separators, printing, 7-8, 13-76, 13-108
RECOVER clause, 13-137
RECOVER command, 13-60

and database recovery, 11-4
AUTOMATIC clause, 13-61
CANCEL clause, 13-63, 13-66
CONTINUE clause, 13-62
DATABASE clause, 13-63
FROM clause, 13-62
LOGFILE clause, 13-62
NOPARALLEL clause, 13-64
SNAPSHOT TIME date clause, 13-63
STANDBY DATABASE clause, 13-63
STANDBY DATAFILE clause, 13-63
STANDBY TABLESPACE clause, 13-63
UNTIL CANCEL clause, 13-63
UNTIL CONTROLFILE clause, 13-64
UNTIL TIME clause, 13-63
USING BACKUP CONTROL FILE clause,

13-63
recovery

RECOVER command, 13-60
RECSEP variable, 7-8, 13-76, 13-108
RECSEPCHAR variable, 7-8, 13-76, 13-108
REFCURSOR bind variables

in a stored function, 6-28
REFCURSOR clause

VARIABLE command, 13-146
registry

editor, 2-3
registry entry

SQLPATH, 2-2, 2-3
RELEASE clause, 13-126
REMARK command, 5-7, 13-67
removing sample tables, xxii
REPFOOTER clause, 13-126
REPFOOTER command, 7-19, 13-68

aligning footer elements, 13-70
BOLD clause, 13-70
CENTER clause, 13-70
COL clause, 13-70
FORMAT clause, 13-70
indenting report footers, 13-70
LEFT clause, 13-70
OFF clause, 13-70

Index

Index-12

REPFOOTER command (continued)
RIGHT clause, 13-70
SKIP clause, 13-70
suppressing current definition, 13-70
TAB clause, 13-70

REPHEADER clause, 13-126
REPHEADER command, 7-19, 13-69

aligning header elements, 7-20
aligning heading elements, 13-70
BOLD clause, 13-70
CENTER clause, 13-70
COL clause, 13-70
FORMAT clause, 13-70
indenting headings, 13-70
LEFT clause, 13-70
OFF clause, 13-70
PAGE clause, 13-69
RIGHT clause, 13-70
SKIP clause, 13-70
suppressing current definition, 13-70
TAB clause, 13-70

REPLACE clause
in COPY command, B-2, B-5
in SAVE command, 13-72, 13-132

reports
autotrace, 9-1
breaks, 13-12
clarifying with spacing and summary lines,

7-9
columns, 13-21
creating bottom titles, 7-19, 13-16, C-1
creating footers, 13-68
creating headers, 13-69
creating headers and footers, 7-19
creating master/detail, 7-24, 13-25
creating top titles, 7-19, 13-141, C-2
csv, 8-1
CSV example, 8-5
displaying, 13-74, 13-80
formatting column headings, 7-1, 13-20
formatting columns, 7-3, 7-5, 13-20
interactive HTML example, 8-2, 8-3
on the web, 8-1
SILENT mode, 8-6
starting on a new page, 13-86
title, 13-141, C-2

RESTRICT, 3-13, 10-6, 13-136
return code, specifying, 5-12, 13-50, 13-153
RIGHT clause, 7-21, 13-70, 13-142
roles, 10-4

disabling, 10-5
re-enabling, 10-5

ROLLBACK clause, 13-50
WHENEVER OSERROR, 13-151
WHENEVER SQLERROR, 13-153

row data
setting prefetch size, 13-76

ROWID
column definition from DESCRIBE, 13-41

ROWPREFETCH clause, 13-127
ROWPREFETCH variable, 13-76
rows

performing computations on, 7-13, 13-28
setting number retrieved at one time, 9-9,

13-74, 13-79
setting the number after which COPY

commits, 13-84
RUN clause, 13-52
RUN command, 13-71

executing current PL/SQL block, 4-6
making last line current, 5-4
similar to / (slash) command, 13-71

S
sample schemas, xvi, xxi, xxii

see Oracle Database Sample Schemas
guide, xxi

using HR in COLUMN example, 13-27
using HR in examples, 5-1, 7-1

sample tables
access to, xxii
creating, xxii
removing, xxii
unlocking, xxi

SAVE command, 13-72
APPEND clause, 13-72
CREATE clause, 13-72
REPLACE clause, 13-72
storing commands in scripts, 13-72
using with INPUT to create scripts, 5-2

saving environment attributes, 13-140
SCAN variable, C-1, C-5
schemas

command, 14-11
database, 9-1
DESCRIBE parameter, 13-41
disabled commands, 14-14
HR sample, xxi
installing own copy of HR, xxii
sample, xvi
SHOW parameter, 13-124, 13-125
unlocking HR, xxi
using HR in COLUMN example, 13-27
using HR in examples, 5-1, 7-1

SCREEN clause, 6-26, 13-19
screens

clearing, 6-26, 13-19
scripts

extension, 13-73, 13-118, 13-140

Index

13

scripts (continued)
registering, 9-9

scripts, authenticating users in, 3-2
SECUREDCOL variable, 13-110
security

changing password, 13-58
nolongontime, 3-13
password viewable, 3-14
RESTRICT, 3-13, 10-6

SELECT command
and BREAK command, 7-9, 13-13, 13-14
and COLUMN command, 13-20
and COMPUTE command, 7-9
and COPY command, B-3, B-5
and DEFINE command, 13-36
and ORDER BY clause, 7-9
formatting results, 6-28, 6-31

semicolon (;)
in PL/SQL blocks, 4-5
in SQL commands, 4-4, 4-5
in SQL*Plus commands, 4-8, 13-1
not stored in buffer, 5-4

SERVEROUTPUT variable, 13-111
service name

in COPY command, B-4, B-6, B-7
Session Editions, 13-33
SET AUTOTRACE, 9-1
SET clause, 13-140
SET command, 2-6, 4-8, 13-73, 13-76

APPINFO variable, 9-9, 13-78
ARRAYSIZE variable, 9-9, 13-74, 13-79, B-7
AUTOCOMMIT variable, 13-74, 13-79
AUTOPRINT variable, 13-74, 13-80, 13-146
AUTORECOVERY variable, 13-74, 13-80
AUTOTRACE variable, 13-80
BLOCKTERMINATOR variable, 13-74, 13-81
BUFFER variable, C-3
CLOSECURSOR variable, C-1, C-4
CMDSEP variable, 13-74, 13-81
COLINVISIBLE variable, 13-82
COLSEP variable, 7-28, 13-74, 13-83
COMPATIBILITY variable, C-1, C-3
CONCAT variable, 6-20, 13-74, 13-84
COPYCOMMIT variable, 13-74, 13-84, B-7
COPYTYPECHECK variable, 13-74, 13-84
DEFINE clause, 6-20
DEFINE variable, 13-74
DESCRIBE variable, 13-74, 13-85
DOCUMENT variable, C-1, C-4
ECHO variable, 13-74, 13-86
EDITFILE variable, 13-74, 13-86
EMBEDDED variable, 13-74, 13-86
ERRORLOGGING variable, 13-86
ESCAPE variable, 6-20, 13-75, 13-91
ESCCHAR variable, 13-92

SET command (continued)
EXITCOMMIT variable, 13-92
FEEDBACK variable, 13-75, 13-93
FLAGGER variable, 13-75, 13-94
FLUSH variable, 9-9, 13-75, 13-95
HEADING variable, 13-95
HEADSEP variable, 7-2, 13-75, 13-96
HISTORY variable, 13-75
INSTANCE variable, 13-75, 13-97
LINESIZE variable, 7-20, 7-26, 13-75, 13-98
LOBOFFSET variable, 13-75, 13-99
LOBPREFETCH variable, 13-75
LOGSOURCE variable, 13-75, 13-100
LONG variable, 13-75, 13-100, B-6
LONGCHUNKSIZE variable, 13-75, 13-101
MARKUP clause, 13-102, 13-105
MAXDATA variable, C-1, C-4
NEWPAGE variable, 7-26, 13-76, 13-106
NULL variable, 13-76, 13-106
NUMFORMAT clause, 2-6
NUMFORMAT variable, 13-76, 13-106
NUMWIDTH variable, 7-3, 13-24, 13-76,

13-107
PAGESIZE clause, 2-5
PAGESIZE variable, 4-4, 7-26, 9-10, 13-76,

13-107
PAUSE variable, 13-76, 13-107
RECSEP variable, 7-8, 13-76, 13-108
RECSEPCHAR variable, 7-8, 13-76, 13-108
ROWPREFETCH variable, 13-76
SCAN variable, C-1, C-5
SECUREDCOL variable, 13-110
SERVEROUTPUT variable, 13-111
SHIFTINOUT variable, 13-76, 13-113
SPACE variable, C-1, C-5
SQLBLANKLINES variable, 13-113
SQLCASE variable, 13-76, 13-114
SQLCONTINUE variable, 13-76, 13-114
SQLNUMBER variable, 13-76, 13-115
SQLPLUSCOMPATIBILITY variable, 13-76,

13-115
SQLPREFIX variable, 13-76, 13-116
SQLPROMPT variable, 9-10, 13-77, 13-116
SQLTERMINATOR variable, 13-77, 13-117
STATEMENTCACHE variable, 13-77
substitution variable, 13-84
SUFFIX variable, 13-77, 13-118
TAB variable, 9-10, 13-77, 13-119
TERMOUT variable, 9-11, 13-77, 13-119
TIME variable, 13-77, 13-119
TIMING variable, 13-77, 13-119
TRIMOUT variable, 13-77, 13-120
TRIMSPOOL variable, 13-77, 13-120
TRUNCATE variable, C-1, C-5
UNDERLINE variable, 13-77, 13-120

Index

Index-14

SET command (continued)
used to format a REFCURSOR variable,

13-147
VERIFY clause, 6-3
VERIFY variable, 6-20, 13-77, 13-121
WRAP variable, 7-6, 13-77, 13-121
XMLOPTIMIZATIONCHECK variable, 13-77,

13-121
XQUERY BASEURI variable, 13-77
XQUERY CONTEXT variable, 13-77
XQUERY NODE variable, 13-77
XQUERY ORDERING variable, 13-77

SET HISTORY command, 13-96
SET LOBPREFETCH command, 13-99
SET MARKUP

BODY clause, 3-10
CSV, 3-10, 13-102
CSV example, 8-5
DELIMITER clause, 13-102
ENTMAP clause, 3-10, 8-5
HEAD clause, 3-10
HTML, 3-10
interactive HTML example, 8-2, 8-3
PREFORMAT clause, 3-12
QUOTE clause, 13-102
TABLE clause, 3-10

SET ROWPREFETCH command, 13-109
SET STATEMENTCACHE command, 13-118
SET system variable summary, 13-74
SET variables, 4-8

See also system variables
SET XQUERY BASEURI, 13-121
SET XQUERY CONTEXT, 13-123
SET XQUERY NODE, 13-122
SET XQUERY ORDERING, 13-122
SGA clause, 13-127
SHIFTINOUT variable, 13-76, 13-113
SHOW

schema parameter, 13-124, 13-125
SHOW clause, 13-141
SHOW command, 4-8, 13-124

ALL clause, 13-124
BTITLE clause, 13-125
CON_ID clause, 13-124
CON_NAME clause, 13-124
ERRORS clause, 13-125
HISTORY clause, 13-125
LABEL variable, C-2
listing current page dimensions, 7-26
LNO clause, 13-125
LOBPREFETCH clause, 13-125
PDBS clause, 13-126
PNO clause, 13-126
RELEASE clause, 13-126
REPFOOTER clause, 13-126

SHOW command (continued)
REPHEADER clause, 13-126
ROWPREFETCH clause, 13-127
SPOOL clause, 13-127
SQLCODE clause, 13-127
STATEMENTCACHE clause, 13-127
TTITLE clause, 13-127
USER clause, 13-127
XQUERY clause, 13-127

SHOWMODE variable, 13-76, 13-113
SHUTDOWN command, 13-130

ABORT, 13-130
IMMEDIATE, 13-131
NORMAL, 13-131
TRANSACTIONAL LOCAL, 13-131

site profile,
glogin, 2-4, 2-5, 3-13, 13-115, 13-116

SKIP clause
in BREAK command, 7-11, 13-14
in REPHEADER and REPFOOTER

commands, 13-70
in TTITLE and BTITLE commands, 7-21,

13-142
used to place blank lines before bottom title,

7-21
SKIP PAGE clause, 7-11, 13-14
slash (/) command, 13-7

files loaded with GET command, 13-51
SPACE variable, C-1, C-5
SPOOL clause, 3-11, 13-127
SPOOL command, 7-26, 13-132

APPEND clause, 13-132
CREATE clause, 13-132
file name, 7-28, 13-132
OFF clause, 7-27, 13-132
OUT clause, 7-28, 13-132
REPLACE clause, 13-132
to HTML file, 3-11
turning spooling off, 7-27, 13-132
use with SET MARKUP, 8-2

SQL clause, 13-19
SQL DML statements

reporting on, 13-74, 13-80
SQL optimizer, 9-2
SQL.PNO, referencing in report titles, 7-22
SQL.SQLCODE

using in EXIT command, 13-49
SQL*Plus

command history, 13-52
command prompt, 3-6
command summary, 13-1
configuring globalization support, 12-1
configuring Oracle Net, 2-8
database administration, 11-1
environment variables, 2-1

Index

15

SQL*Plus (continued)
error messages, 14-1
execution plan, 9-2
exiting, 3-7, 13-49
limits, A-1
obsolete command alternatives, C-1
setting up environment, 2-3
starting, 3-5–3-7
statistics, 9-3
system variables affecting performance, 9-9
tuning, 9-1
who can use, xviii

SQL*Plus and OCI packages, D-1
SQL*Plus command-line vs SQL*Plus Instant

Client, D-1
SQL*Plus Instant Client, D-1–D-4

basic, D-1
installation, D-1
lightweight, D-1
NLS_LANG, D-1
NLS_LANG charset parameter, D-1
NLS_LANG language parameter, D-1
NLS_LANG territory parameter, D-1
required files in packages, D-3
unsupported charset error, D-2

SQLBLANKLINES variable, 13-76, 13-113
SQLCASE variable, 13-76, 13-114
SQLCODE clause, 13-127

SHOW command, 13-127
SQLCONTINUE variable, 13-76, 13-114
SQLNUMBER variable, 13-76, 13-115
SQLPATH

environment variables, 2-2
registry entry, 2-2, 2-3

SQLPLUS command, 3-5
- clause, 3-8
-? clause, 3-8
-MARKUP clause, 3-10, 13-102
-MARKUP option, 3-9
-SILENT clause, 3-14
-SILENT option, 3-14, 8-6
/NOLOG clause, 3-15
and @ (at sign), 3-7
and EXIT FAILURE, 3-7
Application Editions, 3-14
BODY option, 3-10
commands

SQLPLUS, 3-7
connect identifier, 3-14
CSV option, 3-10
display syntax, 3-8
edition, 3-14
ENTMAP option, 3-10
HEAD option, 3-10
HTML option, 3-10

SQLPLUS command (continued)
nolongontime, 3-13
PREFORMAT option, 3-11
RESTRICT, 3-13, 10-6
service name, 3-14
SPOOL clause, 3-11
syntax, 3-7
SYSASM clause, 3-15
SYSBACKUP clause, 3-15
SYSDBA clause, 3-15
SYSDG clause, 3-15
SYSKM clause, 3-15
SYSOPER clause, 3-15
SYSRAC clause, 3-15
TABLE option, 3-10
unsuccessful connection, 3-7
username/password, 3-6, 3-14

SQLPREFIX variable, 13-76, 13-116
SQLPROMPT variable, 9-10, 13-77, 13-116
SQLTERMINATOR variable, 13-55, 13-77,

13-114, 13-117
STANDBY DATAFILE clause, 13-63
STANDBY TABLESPACE clause, 13-63
START clause, 13-140
START command, 5-10, 13-133

arguments, 6-21
passing parameters to a script, 6-21
script, 5-10, 13-133
similar to @ (at sign) command, 5-11, 13-4,

13-134
similar to @@ (double at sign) command,

13-134
starting

SQL*Plus, 1-1, 3-5, 3-6
STARTUP command, 13-135

DOWNGRADE clause, 13-137
FORCE clause, 13-136
MOUNT clause, 13-136
NOMOUNT clause, 13-137
OPEN clause, 13-137
PFILE clause, 13-136
PLUGGABLE DATABASE clause, 13-137
RECOVER clause, 13-137
RESTRICT clause, 13-136
specifying a database, 13-136
UPGRADE clause, 13-137

statement cache
setting size, 13-77

STATEMENTCACHE clause, 13-127
STATEMENTCACHE variable, 13-77
statistics, 9-3

collecting TIMING statistics, 9-6
STOP clause, 13-141
stop query, 4-9

Index

Index-16

STORE command, 2-6, 13-140
SET clause, 13-140

stored functions, 6-28
stored procedures

creating, 4-6
subkey, registry, 2-3
substitution variables, 6-1, 6-2, 6-20, 13-74,

13-84
_EDITOR, 13-38
appending characters immediately after, 6-4
concatenation character, 13-74, 13-84
DEFINE command, 13-36
defining, 6-1, 13-35
deleting, 6-1, 13-144
displaying in headers and footers, 13-70
displaying in titles, 13-142
in ACCEPT command, 6-24, 13-7
listing definitions, 6-1, 13-35
parsing, 9-9
prefixing, 13-84, C-1
related system variables, 6-20
restrictions, 6-6
system variables used with, 6-20
undefined, 6-2
where and how to use, 6-2

SUFFIX variable, 13-77, 13-118
used with EDIT command, 13-47
used with GET command, 13-51
used with SAVE command, 13-73
used with START command, 13-133

SUM function, 7-13
summary lines

computing and printing, 7-13, 13-28
computing and printing at ends of reports,

7-16
computing same type on different columns,

7-17
printing grand and sub summaries (totals),

7-16
printing multiple on same break column, 7-17

syntax
COPY command, B-4

syntax rules
SQL commands, 4-4
SQL*Plus commands, 4-7

SYSASM clause, 3-15, 13-34
SYSBACKUP clause, 3-15, 13-34
SYSDBA clause, 3-15, 13-34
SYSDG clause, 3-15, 13-34
SYSKM clause, 3-15, 13-34
SYSOPER clause, 3-15, 13-34
SYSRAC clause, 3-15, 13-34
system variables, 4-8, 13-73

affecting SQL*Plus performance, 9-9
affecting substitution variables, 6-20

system variables (continued)
listing current settings, 4-8, 13-124
listing old and new values, 13-76, 13-113
storing and restoring, 2-6
summary of SET commands, 13-74

system-maintained values
displaying in headers and footers, 13-70
displaying in titles, 7-22, 13-142
formatting in titles, 7-23

T
TAB clause, 13-70, 13-142
TAB variable, 9-10, 13-77, 13-119
TABLE clause, 3-10
TABLE option, 3-10
tables

access to sample, xxii
controlling destination when copying, B-2,

B-5
copying values between, B-3, B-7
listing column definitions, 4-2, 13-41
referring to another user’s when copying, B-7

TABLESPACE clause, 13-63
tablespaces, recovering, 13-61
tag, HTML, 8-1
TERMOUT variable, 9-11, 13-77, 13-119

using with SPOOL command, 13-132
territory

SQL*Plus Instant Client, D-1
text, 3-10

adding to current line with APPEND, 5-5,
13-9

changing old to new with CHANGE, 5-4,
13-18

clearing from buffer, 5-2, 13-19
text editor

operating system, 5-1, 13-47
TIME variable, 13-77, 13-119
TIMING clause, 13-20
TIMING command, 9-6, 13-140

deleting all areas created by, 13-20
deleting current area, 13-141
SHOW clause, 13-141
START clause, 13-140
STOP clause, 13-141

TIMING variable, 13-77, 13-119
titles

aligning elements, 7-20, 13-142
displaying at bottom of page, 7-19, 13-16,

C-1
displaying at top of page, 7-19, 13-141, C-2
displaying column values, 7-24, 13-25
displaying current date, 7-25, 13-25, 13-27
displaying page number, 7-22, 13-143

Index

17

titles (continued)
displaying system-maintained values, 7-22,

13-142
formatting elements, 13-143
formatting system-maintained values in, 7-23
indenting, 7-21, 13-142
listing current definition, 7-23, 13-16, 13-143
restoring definition, 7-24
setting at start or end of report, 7-19
setting lines from top of page to top title,

7-26, 13-76, 13-106, C-1
setting lines from top title to end of page,

9-10, 13-76, 13-107
setting top and bottom, 7-19, 13-16, 13-141,

C-1, C-2
spacing between last row and bottom title,

7-21
suppressing definition, 7-23, 13-142

TNS_ADMIN
environment variables, 2-2

TO clause, B-4
tracing queries, 9-6, 9-8
tracing statements

for performance statistics, 9-5
for query execution path, 9-5
with parallel query option, 9-6

TRIMOUT variable, 13-77, 13-120
TRIMSPOOL variable, 13-77, 13-120
TRUNCATE variable, C-1, C-5
TRUNCATED clause, 7-6, 13-26
TTITLE clause, 13-127
TTITLE command, 7-19, 13-141

aligning title elements, 7-20, 13-142
BOLD clause, 13-143
CENTER clause, 7-21, 13-142
COL clause, 7-21, 13-142
FORMAT clause, 7-23, 13-143
indenting titles, 7-21, 13-142
LEFT clause, 7-21, 13-142
listing current definition, 7-23, 13-143
OFF clause, 7-24, 13-142
old form, C-5
ON clause, 7-24
referencing column value variable, 7-24,

13-25
restoring current definition, 7-24
RIGHT clause, 7-21, 13-142
SKIP clause, 7-21, 13-142
suppressing current definition, 7-24, 13-142
TAB clause, 13-142

tuning
SET APPINFO OFF, 9-9
SET ARRAYSIZE, 9-9
SET DEFINE OFF, 9-9
SET FLUSH OFF, 9-9

tuning (continued)
SET TRIMOUT ON, 9-11
SET TRIMSPOOL ON, 9-11
SQL*Plus, 9-1
system variables, 9-9

TWO_TASK
environment variables, 2-3

U
UNDEFINE command, 6-1, 13-144

and DEFINE command, 13-35
UNDERLINE variable, 13-77, 13-120
unicode, 12-1
UNIX

ed, 13-38
installing SQL*Plus Instant Client, D-2
SQL*Plus Instant Client files to copy, D-4

unlocking sample tables, xxi
UNTIL CANCEL clause, 13-63
UNTIL CHANGE clause, 13-63
UNTIL CONTROLFILE clause, 13-64
UNTIL TIME clause, 13-63
USER clause, 13-127
user profile, 2-5

glogin.sql, 2-5
login.sql, 2-5

See also site profile
user variable

See substitution variable
username, 3-1

connecting under different, 3-1, 13-33
in CONNECT command, 3-1, 13-33
in COPY command, B-4, B-6, B-7
in SQLPLUS command, 3-6, 3-14

USING BACKUP CONTROL FILE clause, 13-63
USING clause, B-3, B-5
UTF-8, 12-1

V
V$SESSION virtual table, 13-78
V$SQLAREA virtual table, 13-78
VARCHAR columns

default format, 7-5
VARCHAR2

column definition from DESCRIBE, 13-41
VARCHAR2 clause

VARIABLE command, 13-145
VARCHAR2 columns

changing format, 13-22
default format, 7-5

VARIABLE command, 13-144
BINARY_DOUBLE clause, 13-146
BINARY_FLOAT clause, 13-146

Index

Index-18

VARIABLE command (continued)
CHAR clause, 13-145
CLOB clause, 13-146
NCHAR clause, 13-145
NCLOB clause, 13-146
NUMBER clause, 13-145
REFCURSOR clause, 13-146
value clause, 13-144
VARCHAR2 clause, 13-145
variable clause, 13-144

variables
bind variables, 6-27
substitution variables, 13-35
system variables, 4-8

VERIFY clause, 6-3
VERIFY variable, 6-20, 13-77, 13-121

W
WARNING clause, 13-49
web browser, 8-2
web, outputting reports, 8-1
WHENEVER OSERROR command, 13-151

COMMIT clause, 13-151
CONTINUE clause, 13-151
EXIT clause, 13-151
NONE clause, 13-152
ROLLBACK clause, 13-151

WHENEVER SQLERROR command, 13-152
COMMIT clause, 13-152
CONTINUE clause, 13-152
EXIT clause, 13-152

WHENEVER SQLERROR command (continued)
NONE clause, 13-153
ROLLBACK clause, 13-153

Windows
installing SQL*Plus Instant Client, D-2
notepad, 13-38
SQL*Plus Instant Client files to copy, D-4

WORD_WRAPPED clause, 7-6, 7-8, 13-26
WRAP variable, 7-6, 13-77, 13-121
WRAPPED clause, 7-6, 13-26

X
XMLOPTIMIZATIONCHECK variable, 13-77,

13-121
XMLType

column definition from DESCRIBE, 13-41
column formatting, 7-6
column width, 7-5
creating, 7-6
formatting in reports, 7-5
inserting values, 7-6
selecting data, 7-6
setting column retrieval size, 9-10, 13-101
setting maximum column width, 13-100

XQUERY clause, 13-127
XQUERY command, 13-154
XQUERY options

BASEURI, 13-121
CONTEXT, 13-123
NODE, 13-122
ORDERING, 13-122

Index

19

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	SQL*Plus Quick Start
	SQL*Plus Resources
	SQL*Plus Overview
	Who Can Use SQL*Plus
	How Can I Learn SQL*Plus
	How to Use the SQL*Plus Guide
	SQL*Plus Command-line Architecture
	SQL*Plus Client
	Oracle Database

	SQL*Plus Prerequisites
	SQL*Plus Date Format

	Starting SQL*Plus Command-line
	About Starting SQL*Plus Instant Client
	About Connecting to a Different Database
	About Sample Schemas and SQL*Plus
	Unlocking the Sample Tables

	Running your first Query
	About Exiting SQL*Plus

	Part I SQL*Plus Getting Started
	1 SQL*Plus User Interface
	1.1 About the Command-line Screen
	1.2 Changing the Command-line Font and Font Size

	2 Configuring SQL*Plus
	2.1 SQL*Plus Environment Variables
	2.1.1 SQLPATH Registry Entry

	2.2 SQL*Plus Configuration
	2.2.1 Site Profile
	2.2.1.1 Default Site Profile Script

	2.2.2 User Profile
	2.2.2.1 Modifying Your LOGIN File

	2.2.3 Storing and Restoring SQL*Plus System Variables
	2.2.3.1 Restoring the System Variables

	2.2.4 About Installing Command-line Help
	2.2.4.1 Running the hlpbld.sql Script to Install Command-line Help
	2.2.4.2 Running the helpdrop.sql Script to Remove Command-line Help

	2.2.5 About Configuring Oracle Net Services

	3 Starting SQL*Plus
	3.1 Login Username and Password
	3.1.1 Secure External Password Store
	3.1.2 Expired Password
	3.1.3 About Changing your Password

	3.2 About Connecting to a Database
	3.2.1 Net Service Name
	3.2.2 Full Connection Identifier
	3.2.3 Easy Connection Identifier
	3.2.4 Connectionless Session with /NOLOG

	3.3 About Starting SQL*Plus
	3.3.1 About Starting Command-line SQL*Plus
	3.3.2 About Getting Command-line Help

	3.4 About Exiting SQL*Plus Command-line
	3.5 SQL*Plus Program Syntax
	3.5.1 Options
	3.5.1.1 HELP Option
	3.5.1.2 VERSION Option
	3.5.1.3 COMPATIBILITY Option
	3.5.1.4 LOGON Option
	3.5.1.5 FAST Option
	3.5.1.6 MARKUP Options
	3.5.1.7 MARKUP Usage Notes
	3.5.1.8 No Login Time Option
	3.5.1.9 RESTRICT Option
	3.5.1.10 SILENT Option

	3.5.2 Logon
	3.5.3 Start

	Part II Using SQL*Plus
	4 SQL*Plus Basics
	4.1 About Entering and Executing Commands
	4.1.1 The SQL Buffer
	4.1.2 About Executing Commands

	4.2 About Listing a Table Definition
	4.3 About Listing PL/SQL Definitions
	4.4 Running SQL Commands
	4.4.1 About Understanding SQL Command Syntax
	4.4.1.1 About Dividing a SQL Command into Separate Lines
	4.4.1.2 About Ending a SQL Command

	4.5 About Running PL/SQL Blocks
	4.5.1 About Creating Stored Procedures

	4.6 Running SQL*Plus Commands
	4.6.1 About Understanding SQL*Plus Command Syntax
	4.6.1.1 About Continuing a Long SQL*Plus Command on Additional Lines

	4.7 System Variables that Affect How Commands Run
	4.8 About Stopping a Command while it is Running
	4.9 About Running Operating System Commands
	4.10 About Pausing the Display
	4.11 About Saving Changes to the Database Automatically
	4.12 About Interpreting Error Messages

	5 Using Scripts in SQL*Plus
	5.1 About Editing Scripts
	5.1.1 Writing Scripts with a System Editor

	5.2 About Editing Scripts in SQL*Plus Command-Line
	5.2.1 Listing the Buffer Contents
	5.2.2 Editing the Current Line
	5.2.3 Appending Text to a Line
	5.2.4 Adding a New Line
	5.2.5 Deleting Lines

	5.3 About Placing Comments in Scripts
	5.3.1 Using the REMARK Command
	5.3.2 Using /*...*/
	5.3.3 Using - -
	5.3.4 Notes on Placing Comments

	5.4 Running Scripts
	5.4.1 Running a Script as You Start SQL*Plus

	5.5 Nesting Scripts
	5.6 About Exiting from a Script with a Return Code

	6 Using Substitution Variables
	6.1 Defining Substitution Variables
	6.2 About Using Predefined Variables
	6.3 Referencing Substitution Variables
	6.3.1 Where and How to Use Substitution Variables
	6.3.2 Difference Between "&" and "&&" Prefixes
	6.3.3 Storing a Query Column Value in a Substitution Variable
	6.3.4 Restrictions
	6.3.5 How Substitution Variables are Handled in SQL*Plus
	6.3.6 Substitution Variable Commands
	6.3.6.1 Using "&" Prefixes With Title Variables
	6.3.6.2 Variables and Text Spacing in Titles

	6.3.7 Substitution Variable Namespace, Types, Formats and Limits
	6.3.8 Assigning Substitution Variables to Bind Variables
	6.3.9 Assigning Bind Variables to Substitution Variables
	6.3.10 Substitution Variable Examples
	6.3.10.1 Setting a Substitution Variable's Value
	6.3.10.2 Using a Substitution Variable
	6.3.10.3 Finding All Defined Substitution Variables
	6.3.10.4 Inserting Data Containing "&" Without Being Prompted
	6.3.10.5 Putting the Current Date in a Spool File Name
	6.3.10.6 Appending Alphanumeric Characters Immediately After a Substitution Variable
	6.3.10.7 Putting a Period After a Substitution Variable
	6.3.10.8 Using a Fixed Value Variable in a TTITLE, BTITLE, REPHEADER or REPFOOTER
	6.3.10.9 Using a Changing Value Variable in a TTITLE, BTITLE, REPHEADER or REPFOOTER
	6.3.10.10 Using the Value of a Bind Variable in a SQL*Plus Command Like SPOOL
	6.3.10.11 Passing Parameters to SQL*Plus Substitution Variables
	6.3.10.12 Passing Operating System Variables to SQL*Plus
	6.3.10.13 Passing a Value to a PL/SQL Procedure From the Command Line
	6.3.10.14 Allowing Script Parameters to be Optional and Have a Default Value
	6.3.10.15 Using a Variable for the SQL*Plus Return Status
	6.3.10.16 Putting the Username and Database in the Prompt

	6.4 System Variables Influencing Substitution Variables
	6.4.1 System Variables in Titles and EXIT

	6.5 Passing Parameters through the START Command
	6.5.1 Script Parameters

	6.6 About Communicating with the User
	6.6.1 Receiving a Substitution Variable Value
	6.6.2 Customizing Prompts for Substitution Variable
	6.6.3 Sending a Message and Accepting Return as Input
	6.6.4 Clearing the Screen

	6.7 About Using Bind Variables
	6.7.1 Creating Bind Variables
	6.7.2 Referencing Bind Variables
	6.7.3 Displaying Bind Variables
	6.7.4 Executing an Input Bind

	6.8 Using REFCURSOR Bind Variables
	6.9 Fetching Iterative Results from a SELECT inside a PL/SQL Block

	7 Formatting SQL*Plus Reports
	7.1 About Formatting Columns
	7.1.1 About Changing Column Headings
	7.1.1.1 Default Headings
	7.1.1.2 Changing Default Headings

	7.1.2 About Formatting NUMBER Columns
	7.1.2.1 Default Display
	7.1.2.2 Changing the Default Display

	7.1.3 About Formatting Datatypes
	7.1.3.1 Default Display
	7.1.3.2 Changing the Default Display

	7.1.4 Copying Column Display Attributes
	7.1.5 Listing and Resetting Column Display Attributes
	7.1.6 About Suppressing and Restoring Column Display Attributes
	7.1.7 Printing a Line of Characters after Wrapped Column Values

	7.2 About Clarifying Your Report with Spacing and Summary Lines
	7.2.1 Suppressing Duplicate Values in Break Columns
	7.2.2 Inserting Space when a Break Column's Value Changes
	7.2.3 Inserting Space after Every Row
	7.2.4 Using Multiple Spacing Techniques
	7.2.5 Listing and Removing Break Definitions
	7.2.6 Computing Summary Lines when a Break Column's Value Changes
	7.2.7 Computing Summary Lines at the End of the Report
	7.2.8 Computing Multiple Summary Values and Lines
	7.2.9 Listing and Removing COMPUTE Definitions

	7.3 About Defining Page and Report Titles and Dimensions
	7.3.1 Setting the Top and Bottom Titles and Headers and Footers
	7.3.1.1 Positioning Title Elements
	7.3.1.2 Indenting a Title Element
	7.3.1.3 Entering Long Titles

	7.3.2 Displaying System-Maintained Values in Titles
	7.3.3 Listing, Suppressing, and Restoring Page Title Definitions
	7.3.4 Displaying Column Values in Titles
	7.3.5 About Displaying the Current Date in Titles
	7.3.6 Setting Page Dimensions

	7.4 About Storing and Printing Query Results
	7.4.1 Creating a Flat File
	7.4.2 Sending Results to a File
	7.4.3 Sending Results to a Printer

	8 Generating Reports from SQL*Plus
	8.1 About Creating Reports using Command-line SQL*Plus
	8.1.1 Creating HTML Reports
	8.1.1.1 HTML Entities

	8.1.2 Creating CSV Reports
	8.1.3 About Suppressing the Display of SQL*Plus Commands in Reports

	9 Tuning SQL*Plus
	9.1 About Tracing Statements
	9.1.1 Controlling the Autotrace Report
	9.1.2 Execution Plan
	9.1.3 Statistics

	9.2 About Collecting Timing Statistics
	9.3 Tracing Parallel and Distributed Queries
	9.4 Execution Plan Output in Earlier Databases
	9.5 About SQL*Plus Script Tuning
	9.5.1 COLUMN NOPRINT
	9.5.2 SET APPINFO OFF
	9.5.3 SET ARRAYSIZE
	9.5.4 SET DEFINE OFF
	9.5.5 SET FLUSH OFF
	9.5.6 SET LINESIZE
	9.5.7 SET LONGCHUNKSIZE
	9.5.8 SET PAGESIZE
	9.5.9 SET SERVEROUTPUT
	9.5.10 SET SQLPROMPT
	9.5.11 SET TAB
	9.5.12 SET TERMOUT
	9.5.13 SET TRIMOUT ON SET TRIMSPOOL ON
	9.5.14 UNDEFINE

	10 SQL*Plus Security
	10.1 Disabling SQL*Plus, SQL, and PL/SQL Commands
	10.2 About Creating and Controlling Roles
	10.2.1 About Disabling SET ROLE
	10.2.2 About Disabling User Roles

	10.3 About Disabling Commands with SQLPLUS -RESTRICT
	10.4 About Program Argument Security

	11 Database Administration with SQL*Plus
	11.1 Overview
	11.2 Introduction to Database Startup and Shutdown
	11.2.1 Database Startup
	11.2.2 PDB Startup
	11.2.3 Database Shutdown
	11.2.4 PDB Shutdown

	11.3 Redo Log Files
	11.3.1 ARCHIVELOG Mode

	11.4 Database Recovery

	12 SQL*Plus Globalization Support
	12.1 About Configuring Globalization Support in Command-line SQL*Plus
	12.1.1 SQL*Plus Client
	12.1.2 Oracle Database

	12.2 NLS_LANG Environment Variable
	12.2.1 Viewing NLS_LANG Settings

	12.3 Setting NLS_LANG

	Part III SQL*Plus Reference
	13 SQL*Plus Command Reference
	13.1 SQL*Plus Command Summary
	13.2 @ (at sign)
	13.3 @@ (double at sign)
	13.4 / (slash)
	13.5 ACCEPT
	13.6 APPEND
	13.7 ARCHIVE LOG
	13.8 ATTRIBUTE
	13.9 BREAK
	13.10 BTITLE
	13.11 CHANGE
	13.12 CLEAR
	13.13 COLUMN
	13.14 COMPUTE
	13.15 CONNECT
	13.16 COPY
	13.17 DEFINE
	13.17.1 Predefined Variables

	13.18 DEL
	13.19 DESCRIBE
	13.20 DISCONNECT
	13.21 EDIT
	13.22 EXECUTE
	13.23 EXIT
	13.24 GET
	13.25 HELP
	13.26 HISTORY
	13.27 HOST
	13.28 INPUT
	13.29 LIST
	13.30 PASSWORD
	13.31 PAUSE
	13.32 PRINT
	13.33 PROMPT
	13.34 RECOVER
	13.35 REMARK
	13.36 REPFOOTER
	13.37 REPHEADER
	13.38 RUN
	13.39 SAVE
	13.40 SET
	13.41 SET System Variable Summary
	13.41.1 SET APPINFO
	13.41.2 SET ARRAYSIZE
	13.41.3 SET AUTOCOMMIT
	13.41.4 SET AUTOPRINT
	13.41.5 SET AUTORECOVERY
	13.41.6 SET AUTOTRACE
	13.41.7 SET BLOCKTERMINATOR
	13.41.8 SET CMDSEP
	13.41.9 SET COLINVISIBLE
	13.41.10 SET COLSEP
	13.41.11 SET CONCAT
	13.41.12 SET COPYCOMMIT
	13.41.13 SET COPYTYPECHECK
	13.41.14 SET DEFINE
	13.41.15 SET DESCRIBE
	13.41.16 SET ECHO
	13.41.17 SET EDITFILE
	13.41.18 SET EMBEDDED
	13.41.19 SET ERRORLOGGING
	13.41.20 SET ESCAPE
	13.41.21 SET ESCCHAR
	13.41.22 SET EXITCOMMIT
	13.41.23 SET FEEDBACK
	13.41.24 SET FLAGGER
	13.41.25 SET FLUSH
	13.41.26 SET HEADING
	13.41.27 SET HEADSEP
	13.41.28 SET HISTORY
	13.41.29 SET INSTANCE
	13.41.30 SET JSONPRINT
	13.41.31 SET LINESIZE
	13.41.32 SET LOBOFFSET
	13.41.33 SET LOBPREFETCH
	13.41.34 SET LOGSOURCE
	13.41.35 SET LONG
	13.41.36 SET LONGCHUNKSIZE
	13.41.37 SET MARKUP
	13.41.38 SET NEWPAGE
	13.41.39 SET NULL
	13.41.40 SET NUMFORMAT
	13.41.41 SET NUMWIDTH
	13.41.42 SET PAGESIZE
	13.41.43 SET PAUSE
	13.41.44 SET RECSEP
	13.41.45 SET RECSEPCHAR
	13.41.46 SET ROWLIMIT
	13.41.47 SET ROWPREFETCH
	13.41.48 SET SECUREDCOL
	13.41.49 SET SERVEROUTPUT
	13.41.50 SET SHIFTINOUT
	13.41.51 SET SHOWMODE
	13.41.52 SET SQLBLANKLINES
	13.41.53 SET SQLCASE
	13.41.54 SET SQLCONTINUE
	13.41.55 SET SQLNUMBER
	13.41.56 SET SQLPLUSCOMPATIBILITY
	13.41.56.1 SQL*Plus Compatibility Matrix

	13.41.57 SET SQLPREFIX
	13.41.58 SET SQLPROMPT
	13.41.59 SET SQLTERMINATOR
	13.41.60 SET STATEMENTCACHE
	13.41.61 SET SUFFIX
	13.41.62 SET TAB
	13.41.63 SET TERMOUT
	13.41.64 SET TIME
	13.41.65 SET TIMING
	13.41.66 SET TRIMOUT
	13.41.67 SET TRIMSPOOL
	13.41.68 SET UNDERLINE
	13.41.69 SET VERIFY
	13.41.70 SET WRAP
	13.41.71 SET XMLOPTIMIZATIONCHECK
	13.41.72 SET XQUERY BASEURI
	13.41.73 SET XQUERY ORDERING
	13.41.74 SET XQUERY NODE
	13.41.75 SET XQUERY CONTEXT

	13.42 SHOW
	13.43 SHUTDOWN
	13.44 SPOOL
	13.45 START
	13.46 STARTUP
	13.47 STORE
	13.48 TIMING
	13.49 TTITLE
	13.50 UNDEFINE
	13.51 VARIABLE
	13.52 WHENEVER OSERROR
	13.53 WHENEVER SQLERROR
	13.54 XQUERY

	14 SQL*Plus Error Messages
	14.1 SQL*Plus Error Messages
	14.2 COPY Command Messages

	Part IV SQL*Plus Appendixes
	A SQL*Plus Limits
	B SQL*Plus COPY Command
	B.1 COPY Command Syntax
	B.1.1 Terms
	B.1.2 Usage
	B.1.3 Examples

	B.2 Copying Data from One Database to Another
	B.2.1 Understanding COPY Command Syntax
	B.2.2 About Controlling Treatment of the Destination Table
	B.2.3 About Interpreting the Messages that COPY Displays
	B.2.4 Specifying Another User's Table

	B.3 About Copying Data between Tables on One Database

	C Obsolete SQL*Plus Commands
	C.1 SQL*Plus Obsolete Command Alternatives
	C.2 BTITLE (old form)
	C.3 COLUMN DEFAULT
	C.4 DOCUMENT
	C.5 NEWPAGE
	C.6 SET BUFFER
	C.7 SET COMPATIBILITY
	C.8 SET CLOSECURSOR
	C.9 SET DOCUMENT
	C.10 SET MAXDATA
	C.11 SET SCAN
	C.12 SET SPACE
	C.13 SET TRUNCATE
	C.14 TTITLE (old form)

	D SQL*Plus Instant Client
	D.1 About Choosing the SQL*Plus Instant Client to Install
	D.1.1 Basic Instant Client
	D.1.2 Lightweight Instant Client
	D.1.2.1 Lightweight SQL*Plus Instant Client Error with Unsupported Character Set

	D.2 About Installing SQL*Plus Instant Client by Downloading from OTN
	D.2.1 Installing SQL*Plus Instant Client from Linux RPM Packages
	D.2.2 Installing SQL*Plus Instant Client from the UNIX or Windows Zip Files
	D.2.3 List of Files Required for SQL*Plus Instant Client

	D.3 Installing SQL*Plus Instant Client from the 20c Client Release Media
	D.3.1 Installing SQL*Plus Instant Client on UNIX or Linux
	D.3.2 Installing SQL*Plus Instant Client on Windows

	D.4 About Configuring SQL*Plus Instant Client
	D.4.1 Configuring SQL*Plus Instant Client on Linux (from RPMs)
	D.4.2 Configuring SQL*Plus Instant Client on Linux (from Client Media or Zip File) and UNIX
	D.4.3 Configuring SQL*Plus Instant Client on Windows

	D.5 About Connecting to a Database with SQL*Plus Instant Client
	D.6 AS SYSDBA or AS SYSOPER Connections with SQL*Plus Instant Client
	D.7 About Uninstalling Instant Client
	D.7.1 Uninstalling SQL*Plus Instant Client
	D.7.2 Uninstalling the Complete Instant Client

	Index

